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ABSTRACT
In this study, we propose the early adoption of Explainable AI

(XAI) with a focus on three properties: Quality of explanation, the

explanation summaries should be consistent across multiple XAI

methods; Architectural Compatibility, for effective integration in

XAI, the architecture styles of both the XAI methods and the models

to be explained must be compatible with the framework; Config-

urable operations, XAI explanations are operable, akin to machine

learning operations. Thus, an explanation for AI models should be

reproducible and tractable to be trustworthy. We present XAIport,

a framework of XAI microservices encapsulated into Open APIs to

deliver early explanations as observation for learning model quality

assurance. XAIport enables configurable XAI operations along with

machine learning development. We quantify the operational costs

of incorporating XAI with three cloud computer vision services

on Microsoft Azure Cognitive Services, Google Cloud Vertex AI,

and Amazon Rekognition. Our findings show comparable opera-

tional costs between XAI and traditional machine learning, with

XAIport significantly improving both cloud AI model performance

and explanation stability.
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1 INTRODUCTION
Machine Learning Operations (MLOps) is a multidisciplinary ap-

proach that includes a set of best practices, concepts, and develop-

ments [16]. The major tasks of MLOps include automating the ML
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lifecycle, such as model development, validation, quality assurance,

deployment, monitoring, and governance [32].

The quality assurance of MLOps involves several key compo-

nents, such as data validation, feature engineering assessment,

model training evaluation, cross-validation, performance metrics

analysis, fairness, bias evaluation, and model explainability [30].

The explainability of models is necessary in sensitive domains. The

lack of model explanation leads to distrust in the AI models [12, 29].

Post-hoc XAImethods provide explanations for complex, already-

trained models. The Post-hoc XAI techniques, such as SHAP [21],

provide feature attribution as explanations. XAI operations are

often considered a post-hoc activity [27], implemented after the

model has been trained and verified. The quality assurance [30] of

complex software development has shown that incremental devel-

opment and iterative quality control are efficient and cost-effective.

Inspired by this principle, we argue that early adoption of XAI op-

erations enhances the quality assurance of AI models with probing

observations at the feature representation level and summarized

explanations across datasets and AI models.

We present XAIport, an XAI service architecture that allows

XAI early adoption across cloud platforms and offers unified open

API access. Inconsistent explanations can be misleading to evaluate

the AI models. The probing results and derived explanations should

be quantified for their stability and consistency across datasets and

AI models. The efficiency of applying XAI operations should be

measured quantitatively so that the runtime overhead and cost

are well balanced in evaluating the benefits of adopting XAIs. We

summarize the key considerations for the early adoption of XAI

operations as follows:

• Quality of Explanation. Explanations generated by XAI

methods should adhere to the evaluation metrics, specif-

ically the explanation consistency metrics, defined in an

established XAI process [13].

• Architecture Compatibility. The XAI service flexibly inte-

grates the AI models and XAI methods within the microser-

vice architecture. This ensures incorporation into existing

cloud services via open APIs.

• Cost-Efficiency inCI/CD. The adoption of XAI intoMLOps

should result in proportional cost-efficient operational over-

head during the Continuous Integration and Continuous De-

ployment (CI/CD) phases. In ideal scenarios, the additional

complexity XAI introduces is approximately proportional to

existing MLOps.

This approachmirrors best practices in software engineering, where

early integration of unit tests and quality assurance solidifies the

software. Additionally, XAIport provides a unified measurement

of resource consumption and XAI operation overhead.
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2 RELATEDWORKS
We explore the increasing importance of XAI in AI domains, such

as healthcare and finance. Subsequently, we review the MLOps

workflow. Then, we review XAI methods in the field of computer

vision and metrics for the assessment.

Alongside the complexity of AI models, the need for explain-

ability has concurrently risen [1]. Explainability fosters a better

understanding of model behavior, facilitates trust and encourages

responsible AI usage [3]. In the critical sectors of healthcare, finance,

and legal systems, XAI is essential in comprehending the model’s

decisions and implications and ensuring compliance with legal and

ethical protocols [3, 24, 25]. The healthcare domain witnesses an

especially pronounced need for XAI due to the growing reliance

on AI technologies [18].

MLOps integrate machine learning and operations, emphasizing

the importance of explainability or XAI [16]. The process begins

with defining system requirements [11]. During data collection,

potential biases in the data are often overlooked [35]. Data prepro-

cessing techniques, such as cutmix [37] and puzzlemix [15], aim

to improve dataset quality. Feature engineering is central to ML

models, and incorporating explainability during feature selection

simplifies the model [4, 38]. Traditional model quality assurance

metrics are expanded to include explainability, especially in cloud

AI services [22, 40]. Consistency evaluations in XAI ensure trust-

worthy explanations [13]. Deployment in MLOps emphasizes the

use of visualization tools for better model understanding [13].

Class Activation Mapping (CAM) [39] emerged as a pioneering

approach leveraging the global average pooling layer to localize fea-

tures within Convolutional Neural Network models. A limitation,

however, was its need to adjust the model’s fully connected layer.

In contrast, Grad-CAM [28] refined this by determining the local-

ization weight through the layer’s average gradient, eliminating

the need for replacements. Advancing this further, Grad-CAM++

[5] incorporated second-order gradients for enhanced precision.

EigenCAM [23] uniquely uses the primary component of activa-

tions without class-specific considerations. LayerCAM [14] assigns

spatial weights to activations considering only positive gradients,

while XGrad-CAM [9] adjusts gradients based on normalized ac-

tivations. Representing the forefront of XAI methodologies, these

techniques have proven their prowess in generating saliency maps

for visual-based XAI tasks.

The metrics for evaluating explainability in XAI are essential and

gain considerable attention [6]. However, the field is still grappling

with several challenges. Vilone et al. [34] list scientific papers for

approaches to evaluate the XAI method and point out the lack of

consensus in defining unified evaluation metrics. Instead of qualita-

tive metrics, we prefer quantitative metrics to assess XAI methods

concretely. A systematic assessment [13] provides clear consistency

metrics to XAI feature contributions.

Summary - The XAI operations have been particularly ex-

plored in domains such as healthcare and finance. As AI ser-

vices become available through pre-trained models bundled

with elastic cloud computing resources, the operations of XAI

in such a context still require thorough architectural-level

research.

3 THE CONTEXT OF EARLY ADOPTION OF
XAI SERVICES

The goal of XAI adoption is compatible with the objectives of model

quality assurance.We design the XAI operations function as a probe

into AI models with or without the model’s intrinsic structure to

provide explanations, for instance, on how features may affect the

learning results. Hence, we propose the early adoption of XAI opera-

tions revolves around three major core components: (1) definition
of augmented quality assurance metrics for explanation stability

and consistency; (2) compatible architecture styles to integrate with

cloud AI service development and deployment; and (3) XAI oper-

ations are configurable and measurable in the same manner as

cloud AI services. In addition, the adoption of XAI should be cloud-

independent and allow cross-validation of multiple XAI methods,

AI models, and datasets.

3.1 Augmented Metrics for Explanation Quality
Assurance

Several studies [6, 20, 34] have shown that XAI methods do not

always offer consistent explanations, especially in experiments in-

volving Post-hoc XAI methods. Beyond the model performance, the

adoption of XAI operations should measure consistency to ensure

model explainability quality. XAI consistency metrics [13], also

shown in Algorithm 1, comprise both Explanation Stability
and Explanation Consistency.

Algorithm 1 Calculation of Explanation Metrics [13]

1: Input: Set of explanation summaries 𝐸 = {𝜉1, 𝜉2, . . . , 𝜉𝑚}
2: Output: 𝑓 𝐾

𝑑
(Stability); 𝑓 𝑋

𝑑
(Consistency)

Notations:
𝑚 - Number of summaries in 𝐸

𝐾 - Combinations,

(𝑚
2

)
𝜉𝑖 - 𝑖-th explanation summary

𝜉𝑋 - Summary for XAI method 𝑋

𝑓
[𝑘 ]
𝑑

- Prediction changes for 𝑘-th pair

3: procedure Explanation Stability(E)

4: 𝐾 ←
(𝑚
2

)
5: 𝑓 𝐾

𝑑
← 1

𝐾

∑𝐾
𝑘=1

𝑓
[𝑘 ]
𝑑
(𝜉𝑖 , 𝜉 𝑗 ) where 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ≤ 𝑚

6: end procedure
7: procedure Explanation Consistency(E, X)

8: 𝑓 𝑋
𝑑
← 1

𝑚−1
∑𝑚−1
𝑘=1

𝑓
[𝑘 ]
𝑑
(𝜉𝑋 , 𝜉𝑖 ) where 𝑖 ≤ 𝑚

9: end procedure

Explanation Stability measures the consistency among ex-

planations from many data samples. To compute this metric, we

consider all possible pairs of prediction changes from data samples.

We then average all these values to a metric, 𝑓 𝐾
𝑑
, representing sta-

bility. Theoretically, a smaller value of this metric indicates higher

consistency among the explanations generated by the XAI method.

We employ the Explanation Stability in the pilot evaluation.

Explanation Consistency measures the consistency between

different XAI methods. We calculate the prediction changes among

XAI methods and average all to 𝑓 𝑋
𝑑
. A smaller value indicates that

different XAI methods are producing similar explanations.



XAIport: A Service Framework for the Early Adoption of XAI in AI Model Development ICSE 2024, April 14-20, 2024, Lisbon

3.2 Compatible Architecture Styles
The adoption of XAI operations should function in the compatible

architecture context of MLOps. As pre-trained ML models on the

cloud are available, cloud services become the encapsulation of the

models running on elastic computing resources. The communica-

tion between XAI methods and AI models thus follows the service

orientation. We propose XAIport, a service architecture in which

the core XAI components are each represented as a microservice

with the Open API definition. The APIs for the XAIport service are
organized according to Open API 3.0 [31] standards and documents

on SwaggerHub.

The core architecture includes: (1) Coordination Center uses
a configuration template to specify pipelines of end-to-end XAI

operations from data input, to feature variation, to model inference,

to feature contribution explanation, and to evaluation generation;

(2) Data Processing and Storage is responsible for data prepa-
ration and storage intermediate results for explanation generation;

(3) XAI Microservices encapsulate state-of-the-art XAI methods

computing the feature contribution explanation for AI models on a

certain dataset; (4) Evaluation Microservices computes and vi-

sualizes the metrics for XAI explanation. These services produce the

answers to questions such as how is an AI model affected by feature
representation? Figure 1 provides an illustration of integrating XAI

operations along with the development of AI models using cloud AI.

We assume the development of AI models adopts the best practices

and technology supports from MLOps and DevOps [8, 12, 16, 32].

The XAI operations are encapsulated as microservices and deployed

on the cloud as well. The communication between XAI operations

and cloud AI models is only through the endpoints defined by Open

APIs. Thus, the enhanced explanation metrics from XAI provide

extra measurements for AI model quality assurance.

Figure 1: An Illustrating Scenario of Adopting XAI to Multi-
ple Computer Vision Cloud AI Model Development.

Integrationwith Open Community PretrainedModels. The
service-oriented open API architecture XAIport is extensible to the

AI model development based on open community libraries such

as Hugging face [36]. First, the pre-trained models are accessible

for trial and testing with open APIs in the same communication

model as the cloud AI services in Figure 1. In addition, when the

pre-trained models are downloaded for further retraining and fine-

tuning on a domain-specific dataset, the model is deployed in a

containerized virtual machine that can be run on a cloud or on

a proprietary data center. If we assume such a model is further

encapsulated with Open API access, then the XAIport architecture

illustrated in Figure 1 is applicable without any further changes

since XAIport decouples XAI operations and AI models through

only the endpoint communication through Open APIs.

Extension to Support A/B Testing of AI Services. Performing

A/B testing on ML models has been adopted by real-world services

[19]. The endpoint of an AI model in the form of Open APIs is the

operation unit for automated deployment with multiple production

variants for A/B testing. As illustrated in Figure 1, the XAI services

with Open API as endpoints are capable of either covering a certain

variant (such as the data augmentation) or communicating with

these A/B testing variant endpoints and derive the explanation to

link the model’s learning performance and feature contributions.

3.3 Configurable and Measurable XAI
Operations

Current XAI methods are in the form of algorithms and disparate

library code [1, 3, 13, 21]. We propose the XAI operations should

be configurable and measurable. XAI methods, particularly post-

hoc techniques, require additional processing power and compu-

tational time, thereby increasing the computational overhead [27].

Hardware-wise, the CPU, memory, and GPU requirements may rise

to accommodate additional XAI processes. We target to methodi-

cally evaluate the operational overhead incurred in the integration

and deployment of XAI services across multifarious cloud providers.

We focus on measuring the XAI service deployment time and com-

plexity. This exercise entails multiple steps:

Selection of CI/CD Tool. Our methodology commences with

the use of cloud pipeline and build tools as the designated con-

tinuous integration and continuous deployment (CI/CD) pipeline

tool. For instance, Amazon Web Services CodeBuild furnishes es-

sential building facilities for containerized applications, which is

imperative for orchestrating a cloud-agnostic XAI milieu, ensuring

uniform deployment across diverse cloud platforms.

Measuring XAIport Computational Overhead. We evalu-

ate the computational overhead of diverse AI models and XAI

techniques using CodeCarbon [17]. This tool, previously applied

to several projects [26, 33], is incorporated into XAIport to track

time, energy, and carbon footprints during XAI activities and AI

predictions. Using CodeCarbon [17], we differentiate the energy

efficiency and time consumption of various XAI operations, guiding

the selection of the optimal method for specific use cases.

Measuring XAI Service Deployment Overhead.We assess

the effort needed to deploy XAIport on multiple cloud providers.

We perform Amazon Web Services Elastic Container Service (ECS),

Azure Virtual Machines, Azure Container Instances, and Google

Kubernetes Engine for their efficiency in deploying AI container

applications.
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4 A PILOT EVALUATION
We conduct a pilot study using XAIport to explore the answer to a

data-driven question for cloud-based AI services as follows.

Can early adoption of XAI improve the learning performance

of cloud computer vision services? If any, can the improve-

ment be explained? Can the explanation result be evaluated?

This study uses five visual explanation algorithms, shown in Ta-

ble 1, applied to three image classification computer vision services,

which are Microsoft Azure Cognitive Services [22], Google Cloud

Vertex AI [10], and Amazon Rekognition [2]. Cloud platforms offer

the following advantages. First, they automate deployment with re-

source allocation. Second, they offer built-in scalability to manage

computational demands efficiently. Third, they deliver monitor-

ing tools for basic model performance. However, These platforms

overlook the explainability of models. In this case, we adopt the

XAIport service framework. Upon evaluating the three cloud AI

services, we identify potential areas for further optimization in

both model performance and explanation stability. Then, with the

integration of Cutmix [37] and Puzzlemix [15] data augmentation

techniques in the XAI operation, we enhance both the cloud model

performance and explanation stability on these platforms.

4.1 Improving Cloud AI Explanation Metrics
with Early XAI Adoption

We apply the ImageNet dataset [7] via the XAIport APIs to explore
the data-driven question on AI model development. The baseline

is the cloud AI service trained only using the original dataset. We

adopt five XAI algorithms, which are Grad-CAM [28], Grad-CAM++

[5], EigenCAM [23], LayerCAM [14], and XGrad-CAM [9]. Adop-

tion of these XAI methods takes image data as inputs from the data

processing service and generate saliency maps that highlight the

focal areas of layers of the model. Then, these data become the

inputs for the three cloud AI and return prediction scores. Finally,

we use the evaluation service to derive prediction changes and the

stability metrics as algorithm 1.

Table 1: Model and XAI Evaluation Results

Service F1-score XAI Evaluation

GradCAM GradCAM++ EigenCAM LayerCAM XGradCAM

Azure (B) 0.839 22.227 21.211 32.498 20.595 22.229

Google (B) 0.565 22.329 21.233 30.713 21.328 22.327

Amazon (B) 0.807 18.900 17.505 30.119 17.027 18.900

Azure (C) 0.864 4.544 3.773 22.072 0.339 0.339

Google (C) 0.876 4.316 4.437 18.427 5.147 4.316

Amazon (C) 0.818 13.474 11.901 28.623 12.120 13.475

Azure (P) 0.905 0.078 0.107 4.732 0.002 0.002

Google (P) 0.869 10.440 10.246 20.754 10.781 10.440

Amazon (P) 0.828 14.316 13.179 26.105 2.797 3.724

Note: "B" stands for baseline without augmentation, "C" stands for "Cutmix" and "P"

stands for "Puzzlemix". The values in the table are XAI stability metrics [13]. (The

smaller, the better explanation stability.)

Results and Discussion. Table 1 shows the detailed measure-

ment results. The F1-score shows a subtle enhancement when both

CutMix [37] and PuzzleMix [15] techniques are employed. A pro-

nounced improvement is observed in the model’s explanation eval-

uation. The consensus of XAI explanations has alignment with

the performance of cloud AI services. Such a consistent explana-

tion result provides a trustworthy view of the contribution of the

data-driven technique to the model performance improvement.

These cloud AI services are entirely black-box. There is a lack of

access to the model’s parameters, the internal network structure,

fine-tuned loss functions, and so on. The adoption of XAI through

service orientation and open APIs has enabled us to probe the

performance and obtain explanations.

4.2 Computational Analysis of XAI Operations
and Deployment Across Cloud Services

We record and decompose the time spent on (1) Data Processing, (2)

Feature Variation, (3) Cloud Inference, (4) XAI and (5) Explanation

Stability. We analyze the operation consumption across the three

cloud AI services and the five CAM-based XAI methods.

Note: The chart displays the decomposition of average XAI execution time per data

sample, derived from 1,000 experiments: Data Processing (0.12s ± 0.03s), Feature

Variation (0.23s ± 0.06s), Cloud Inference (Azure 1.39s ± 0.42s, Google 1.26s ± 0.48s,

Amazon 1.06s ± 0.28s), XAI methods: GradCAM (0.63s ± 0.12s), GradCAM++ (0.53s

± 0.08s), EigenCAM (9.19s ± 3.38s), LayerCAM (0.46s ± 0.06s), XgradCAM (0.51s ±
0.11s), Explanation Stability (1.60s ± 0.56s).

Figure 2: XAI Operations and Framework Deployment Time

Figure 2 shows the composition of each unit in XAI operations on

average per data sample and the framework deployment duration.

The model inference time is relatively stable across cloud services.

However, XAI methods take different demands and there is a need

for optimization in the evaluation metrics.

5 CONCLUSION
This paper outlines the early adoption of XAI operations in the

practices of AI model quality assurance. We define the adoption

context in three aspects with mature development methods and

technology supports. We illustrate a pilot study on adopting XAI

operations to answer a data-driven question with regard to improv-

ing three cloud AI services. We demonstrate consistent explanation

results with measurements of the computation and deployment

overhead. We advocate such a context of practice to broad open

AI models’ quality assurance with XAI to gain trustworthiness. In

future work, we aim to further develop the software development

toolkit (SDK) based on the XAIport framework. The SDK provides

the tools for automated deployment of XAI operations along the

AI service development using open pre-trained models, dynamic

A/B testing of AI services, and validation of new XAI methods.
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