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Abstract—This paper presents the design of an open-API-based
explainable AI (XAI) service to provide feature contribution
explanations for cloud AI services. Cloud AI services are widely
used to develop domain-specific applications with precise learning
metrics. However, the underlying cloud AI services remain
opaque on how the model produces the prediction. We argue
that XAI operations are accessible as open APIs to enable
the consolidation of the XAI operations into the cloud AI
services assessment. We propose a design using a microservice
architecture that offers feature contribution explanations for
cloud AI services without unfolding the network structure of the
cloud models. We can also utilize this architecture to evaluate
the model performance and XAI consistency metrics showing
cloud AI services’ trustworthiness. We collect provenance data
from operational pipelines to enable reproducibility within the
XAI service. Furthermore, we present the discovery scenarios
for the experimental tests regarding model performance and
XAI consistency metrics for the leading cloud vision AI services.
The results confirm that the architecture, based on open APIs,
is cloud-agnostic. Additionally, data augmentations result in
measurable improvements in XAI consistency metrics for cloud
AI services.

Index Terms—explainable AI, microservices, cloud model ser-
vice, software architecture, software quality

I. INTRODUCTION

ARTIFICIAL Intelligence (AI) as a service is a rapidly ex-
panding technology paradigm. The AI market is expected

to grow as more companies adopt AI technology to remain
competitive. Major cloud providers, including Amazon Web
Services [1], Microsoft Azure [2], Google Cloud Platform [3],
Alibaba Cloud [4], Oracle Cloud, IBM Cloud, and Salesforce
Service Cloud, offer AI as a service. This enables customers
to develop and deploy AI models using cloud-based platforms.

Cloud AI services commonly achieve learning accuracy
by using standard metrics such as precision, recall, and F1
score [1]–[3]. However, certain services such as Alibaba
Cloud [4] may not explicitly provide these performance met-
rics. Additionally, a recent study [5] conducts a detailed
investigation into the maintenance of AI services, focusing on
computer vision. This research uncovers inconsistencies and
evolution risks in AI services.

The explainable AI (XAI) aims to develop models and
methods that enable human users to comprehend, trust, and
manage AI models [6]. A study [7] discusses the role of
XAI in computer vision-based decisions. They emphasize that
XAI can promote trust in AI computer vision systems through

improved understanding and prediction. Another work [8]
presents the XAI criterion that refines the functionality ob-
jectives for XAI methods. One criterion involves the analysis
of feature influence and feature causality.

XAI is increasingly adopted in applications that require
transparency, fairness, and trustworthiness in decision-making,
particularly in sensitive domains [9]. The limitation of the XAI
practices is the existing XAI techniques developed are often
tailored to specific types of models or cases [10], which makes
the XAI practices less reusable and versatile to other appli-
cations. Meanwhile, numerous cloud AI services have been
provided by cloud platforms to support general applications
across domains [1]–[4]. Together, the trend underscores the
need to integrate XAI methods with cloud AI services to foster
trust in cloud-based AI applications.

XAI demands that activities conducted during an XAI
process be traceable and reproducible [11]. Ensuring that
the data utilized in the AI models and XAI methods are
trustworthy becomes important. Addressing data provenance
in XAI operations is essential for guaranteeing that the gen-
erated explanations are reliable, verifiable, and consistently
reproducible across diverse settings.

Despite the numerous XAI frameworks available, a notice-
able gap exists among essential components [10] including
data processing, methods configuration, and evaluation met-
rics. These components collectively form complex pipelines.
This observation motivates our proposal: a design by a cloud-
native paradigm based on the microservice architecture. This
architectural style benefits from its capacity for the indepen-
dent deployment of diverse components, streamlined commu-
nication via RESTful APIs, and a built-in adaptability that
accommodates the introduction of new XAI methods, substitu-
tions of AI models, and adjustments in pipeline configurations.
Furthermore, our proposed architecture offers precise record
capabilities. This ensures that the provenance of every XAI
operation is transparent, facilitating the reproduction of XAI
tasks or entire workflows.

For black-box models or cloud-based AI services, the
task of revealing the internal structures of AI models
becomes unfeasible, especially for those AI services that
encapsulate models behind standard RESTful APIs. We
address this challenge by drawing inspiration from XAI
methods that focus on feature influence and causality,
for example, SHAP [12]. Besides, we propose a method
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that approximates the black-box AI model with a custom-
built model and computes the feature contribution values,
providing interpretable insights even from opaque AI models.
Confronted by these challenges, our work is directed towards
the following research questions.

• RQ1: How to obtain and evaluate XAI results without
unfolding the cloud AI service model structure?
We investigate the cloud AI services and XAI methods
in Section II-A and II-B. This enables us to understand
the communication between cloud AI services and the
specific requirements for XAI methods. Subsequently,
we briefly summarize the applicable XAI methods in
the taxonomy, Section IV-A. We also seek the packaged
XAI frameworks listed in Section II-C. However, most
frameworks are not explicitly compatible with cloud AI
services. Therefore, we propose workflow as Figure 2
that integrates Cloud AI with Post hoc XAI, expressed
in Section IV-B. Ultimately, scenarios one and two in
Section VII-C and VII-B compute and evaluate the XAI
results from integrating three major cloud AI services.

• RQ2: What are the essential components required for
XAI service architecture to deliver feature contribution
explanations for models?
To implement XAI within a service-oriented framework,
Section V delineates the key architectural components
critical for integration with existing cloud-based AI ser-
vices. Following this, Section VII presents four illustra-
tive scenarios using the designed XAI service architecture
to explore typical discovery situations.

• RQ3: How to collect XAI provenance data from oper-
ations to ensure traceability within the XAI service?
Referring to the related works in Section II-D, we notice
that the provenance data is necessary for XAI operations.
Referring to the key components in XAI operations, we
provide a graph format design for the XAI provenance
data. Section VI introduces how to automatically collect
the provenance data from various XAI operations within
the XAI service. By retrieving the provenance data, we
can identify differences and edit configurations to the
XAI operations. In section VII-D, scenario three, we
showcase a scenario that optimizes the model by mod-
ifying and executing reproduction. This scenario leads
to improvements in both model performance and the
XAI evaluation metrics. With the operations traceable and
reproducible, we present the cloud-agnostic reproduction
in scenario four, section VII-E.

In this work, we propose an innovative XAI service architec-
ture specifically designed to feature contribution explanations,
illustrated through a showcase scenario drawn from computer
vision cloud AI services. This method involves the utilization
of approximation models to generate images, emphasizing the
most contributing features. These masked images then act as
inputs to create the AI services’ predictions. We calculate the
prediction changes value between the original and masked
images. Leveraging these prediction changes, we compute
a comprehensive explanation summary for the AI services,

providing a transparent overview.
The main contributions are summarized as follows:

• Design cloud-platform-independent XAI service
framework. The open API architecture is independent
of the cloud-specific AI service. The architecture
accommodates first-class entities in the XAI process
as unified micro-services. The communication is open
API-based, thus encapsulating the variance of models,
XAI methods, and inputs and outputs from feature
engineering.

• Provide explanations across multiple cloud AI ser-
vices. Based on the definition of the XAI consistency
metric, we derive an explanation summary cross-validated
on multiple clouds to observe both the learning perfor-
mance of AI services and data augmentation effects.

• Reproduce XAI operations through configure-and-
rerun. The configuration of services is the receipt of com-
posing an end-to-end explanation workflow. By reserv-
ing the configuration of each service given a workflow
definition, we accumulate the provenance of how each
explanation is produced. Through the coordination center
of the XAI framework, we can rerun the XAI workflow
to reproduce the explanation.

We demonstrate the XAI service architecture with four
discovery scenarios in Section VII, including (1) Cloud AI
performance evaluation, (2) XAI consistency evaluation, (3)
Probing of data augmentation effect, (4) Cloud-agnostic re-
production on three major cloud service platforms includes
Azure Cognitive Service [2], Google Cloud Vertex AI [3], and
Amazon Web Services Rekognition [1]. Our study employs
consistency metric [8] to assess the explanations derived
from multiple cloud AI services. The experimental results help
us observe and discover that data augmentation techniques
not only enhance all cloud AI service learning performance
but also improve evaluation results from the different XAI
methods.

The adoption of XAI frameworks is designed for data sci-
ence and machine learning engineers, effectively functioning
as a tool for assessment in the development of complex AI
systems. A recent study [13] proposes a multi-level gover-
nance pattern that integrates team-level XAI practices with
organization-level ethical standards, thereby organizing ethical
principles. This work introduces an XAI service framework
for AI service practitioners, ensuring alignment with ethical
guidelines and organizational values.

The remaining sections are structured as follows: Section
II explores related works on cloud-based AI services and
their explainability challenges. Section III summarizes the
employed background knowledge. In Section IV, we delve
into post-hoc XAI methods and their integration into cloud
services. Section V presents our microservices-based XAI
architecture. Section VI emphasizes the tracing and repro-
ducibility aspects of XAI operations using provenance data.
Section VII presents the setup and results of the experiment.
Section VIII evaluates the XAI service from the system aspect.
The paper concludes by summarizing our findings in Section
IX.
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II. RELATED WORKS

This section begins a survey of the growing use of cloud-
based AI services for various applications. There is a lack
of XAI in cloud services. Following this, a comprehensive
overview of various XAI methods and the corresponding im-
plementation frameworks is presented. Lastly, the importance
of data provenance within XAI for responsible AI practices is
discussed.

A. Cloud-based AI Services

Cloud-based AI services, which offer customized AI models
and pre-trained models through APIs for various tasks, have
attracted substantial interest due to their versatility and ease
of use [2]. A study [14] provided a comparative analysis of
cloud computer vision services, focusing on their accuracy,
performance, and cost. However, the study did not delve into
the specifics of the AI models used or draw conclusions
based on the comparative evaluation. Image classification uses
machine learning algorithms to categorize images based on
their content, offering potential applications across various
fields. The lack of explanation can hinder the adoption and
trust of these AI systems. For instance, a survey [15] illu-
minated the potential biases in visual datasets, emphasizing
the necessity for bias discovery and quantification to ensure
fairness and transparency in AI solutions. A recent publication
introduces the tool named Threshy [16], which helps software
developers assess an AI service’s confidence score. Integrating
configuration into client applications and monitoring systems
represents an advance in the practical use and safe deployment
of AI services. Both our work and Threshy [16], aim to assess
cloud AI services outputs, but significantly differ in goals and
methodologies. While Threshy focuses on decision threshold
selection, we concentrate on XAI results from service.

B. The Post-hoc XAI Methods

Post-hoc XAI methods are generally classified into two
categories [8]: Model-specific and Model-agnostic methods.
Model-specific methods, such as CAM-based techniques [17]–
[23], are designed for specific models and require access
to key parameters or layer contents of the AI model for
generating explanations. In contrast, Model-agnostic methods,
such as SHAP [12], are more flexible, capable of producing
explanations solely from the input and output of any machine
learning model. The taxonomy uses a tree topology to organize
the layers of categories of the XAI methods [8].

C. Frameworks and Packages for Implementing XAI

There are several frameworks and packages have been
developed to facilitate the implementation of XAI. Dalex [24],
for example, constructs a wrapper around prediction models
to enable their exploration and comparison using a multitude
of model-level and prediction-level explanations. IBM’s Ex-
plainability 360 toolkit [25] incorporates an array of model
explanation methods within its Python library. Meanwhile,
Microsoft’s InterpretML [26] supports eight XAI methodolo-
gies. Other libraries such as Captum [27] and OmniXAI [10]

provide extensive collections of XAI techniques. Table I shows
a comparative summary of various XAI frameworks.

TABLE I
COMPARATIVE ANALYSIS OF XAI FRAMEWORKS AND LIBRARIES

Framework Supported
Data Types

Supported
Methods

Cloud De-
ployment

Dalex [24] Tab 1, 2, 3, 4, 5 N/A
IBM AIX360 [25] Tab/Image/Txt 1, 2, 6 Docker
InterpretML [26] Tab/Txt 1, 2, 3, 10 N/A
Captum [27] Image/Txt 1, 2, 6, 7, 8 N/A
OmniXAI [10] Tab/Image/Txt 1, 2, 3, 4, 5, 6, 7 N/A
Vertex XAI [3] Tab/Image/Txt 1, 2, 8 GCP service
XAI Service Tab/Image/Txt Encapsulate all

methods and
frameworks

API-based

Supported XAI Methods: 1. LIME (Local Interpretable Model-agnostic
Explanations) [28], 2. SHAP (SHapley Additive exPlanations) [12], 3. PDP
(Partial Dependence Plots) [29], 4. ICE (Individual Conditional Expecta-
tion) [30], 5. ALE (Accumulated Local Effects) [31], 6. LRP (Layer-wise
Relevance Propagation) [32], 7. CAM (Class Activation Mapping) [17]–
[23], 8. Integrated Gradients [33], 9. Counterfactual Explanations [34], 10.
Decision Rules [35]. Note: Tab for Tabular, Txt for Text.

Different frameworks and libraries present unique charac-
teristics and orientations. For instance, InterpretML [26] is
primarily designed for tabular and minor text data, while
Captum [27] is specifically tailored for PyTorch models. Fur-
thermore, these libraries exhibit significant differences in their
interfaces, as highlighted by OmniXAI [10]. It is also worth
noting that comparing the results or performance of these
diverse tools across various use cases may prove challenging
due to their distinct features and capabilities:

• Expertise Requirements. These frameworks require ex-
pertise for implementation, potentially limiting their ac-
cessibility to a broader user base. A paper [36] discusses
the challenges and opportunities of developing user-
friendly XAI tools that non-experts can use.

• Limited Data and Model Types Support. The support
for various data types and models is limited [10], re-
stricting their applicability across diverse custom models
and databases.

• Variation in Method Support. There is a difference
in the methods supported by frameworks. Practitioners
encounter difficulties selecting the available methods and
performing the necessary data preprocessing.

• Insufficient Explanation Evaluation. Many works [37],
[38] states that XAI lack standardized evaluation proce-
dures. The current frameworks often lack robust mecha-
nisms for evaluating the explanation results, limiting their
effectiveness and potential improvements [39].

• Limited Support for Cloud AI Services. These XAI
frameworks rarely support cloud AI services, undermin-
ing their utility in multiple cloud platforms. Integrating
configuration into client applications and monitoring sys-
tems represents an advance in the practical use and safe
deployment of AI services.

These limitations suggest that the frameworks’ inflexibility
and extensive preparation may hinder the efficient application
of XAI methods.
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D. Data Provenance for XAI

Data provenance in the context of XAI is a component used
to trace and reproduce operations. A review [40] explores
the ethical considerations and presents the implementation
of data provenance to ensure the AI system is responsible.
Data provenance ensures transparency and accountability [40]
of operations. The PROV-DM model [41] offers standardized
components of representing provenance information. It defines
concepts and relationships to capture entities involved in a
process, activities that took place, and their interconnections.

Regarding practical implementations, a machine learning
pipeline is proposed [42] emphasizing reproducible as a form
of data provenance. Renku [43] is an open online platform
tracking data, code, and results with Git. It assists researchers
in evaluating, reproducing, and reusing data and algorithms.
WholeTale [44] also promotes reproducibility by enabling
researchers to capture and share data, code, and workflow.
The work introduces a system [45] designed to extract, store,
and manage both metadata and provenance information for
common artifacts in machine learning experiments, including
datasets, models, predictions, evaluations, and training runs.
The experiment [46] enables provenance to be available as
metadata. This study aims to enable the XAI service system
to provide native provenance data. The XAI operations are
reproducible, as provided graph-formatted provenance data,
which includes datasets, models, XAI methods, and opera-
tional settings.

III. BACKGROUND

In this section, we provide a comprehensive background on
the selected XAI techniques and evaluation metrics.

A. CAM-based XAI methods

Methods for feature contribution explanation reveal and
visualize the correlations between specific content elements,
such as pixels in an image, and the resulting decision from a
model. In explaining vision tasks, Class Activation Mapping
(CAM) [47] initially employs the global average pooling layer
to localize features in Convolutional Neural Networks (CNNs).
However, the method needs to modify the original layer of
the model. As optimizations, Grad-CAM obtains [17] the
localization weight by the average gradient of one layer instead
of replacing it. Grad-CAM++ [18] is an improved version that
uses second-order gradients. EigenCAM [20] takes the first
principle component of the activation without class discrim-
ination. LayerCAM [21] spatially weight the activations by
positive gradients. XGrad-CAM [22] scales the gradients by
the normalized activations.

The example images of the explanation of the CAM-based
method for vision AI tasks are shown in Figure 1. The saliency
maps in the second row highlight the regions in the image that
contribute to the model prediction.

B. Metrics for Evaluating XAI Techniques

The previous work [8] reviews and compares XAI eval-
uation criteria and metrics. To compare the XAI outcomes

Fig. 1. Grad-CAM Visual Explanations on ImageNet Dataset Samples

objectively, we use consistency metrics [8] to perform the
assessment and comparison of various XAI methods across
identical datasets. We outline the specific equation to compute
the intra-consistency [8], also known as the XAI stability.

1) The Prediction Change Value: The metrics are based on
the feature importance, also present as feature contribution,
provided by XAI methods. Assume f̂(x[i]) denote the model’s
predicted value for a dataset x[i]. We use x[i]+ to symbolize
the transformed or augmented data sample, an image under
masking. We introduce an equation to compute the difference
value induced by the feature, denoted as the prediction change
value in Equations 1.

δ(x[i])|rel =

∣∣∣∣∣ f̂(x[i]+)− f̂(x[i])

f̂(x[i])

∣∣∣∣∣ (1)

Additionally, the prediction change values of the entire dataset
X can be aggregated. The experiment, in Section VII-B, uses
histograms to present the distribution of prediction changes.

2) XAI Consistency Evaluation: The XAI consistency met-
rics as described [8] include both Intra-Method Consistency
and Inter-Method Consistency. In our study, the objective is
not to compare inter-XAI methods. Therefore, we specifi-
cally focus on Intra-Method Consistency, also known as XAI
stability evaluation, to assess the quality of the generated
explanations by a series of XAI methods.

Here, we present the stability evaluation. We define the set
of explanations, denoted by E = {ξ1, ξ2, . . . , ξm}, where ξi

represents the i-th data sample explanation. Next, we define
the distance between any two pairs of summaries as fd(ξi, ξj),
where fd is the distance function, and ξi and ξj are two
different explanation. Then, we describe the combination of
choices for selecting any pair of explanations from E, given
by K =

(
m
2

)
. This combination represents the number of ways

to choose two explanations from the m in total.

fK
d =

1

K

K∑
k=1

fd(ξ
i, ξj), (i ̸= j, i ≤ m, j ≤ m) (2)

Here, fK
d represents the stability metric computed as the

average over all K distance values, where each distance value
fd is calculated for a specific pair of explanation ξi and ξj .
This metric is used for the assessment of various XAI methods
in scenario three, Section VII-D. In this case, the distance
value fd is represented by the prediction change value.
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Fig. 2. Workflow for Integrating Cloud AI Services with State-of-the-Art Deep Learning Models to Approximate Feature Contribution Values Using Post-Hoc
XAI Methods

IV. THE POST HOC XAI METHODS WITH FEATURE
CONTRIBUTION EXPLANATION

In this section, we discuss the post-hoc XAI methods.
We explore feature contribution explanation techniques. Then,
we present a design that integrates feature contribution XAI
methods with cloud AI services, addressing RQ1.

A. XAI Methods Taxonomy

XAI methods are mainly classified into two categories. One
is to develop interpretable models rather than to explain deep
learning models [48]. Interpretable models, such as linear
regression, logistic regression, decision trees, and k-nearest
algorithms, make predictions in ways that are relatively under-
standable to humans. These models are transparent, allowing
researchers to understand decision-making by analyzing inter-
nal conditions, such as branches in decision trees. Compared
to black-box AI models, interpretable models have the natural
advantage of transparency.

The other category pertains to the post-hoc explanation
methods [49]. This approach is typically applied to AI systems
that are already deployed and operational, with the need for
explanations emerging after the system has made a decision.
Post hoc explanation methods are further grouped into model-
agnostic and model-specific. Model-specific methods rely on
the structure and properties of the model as information,
such as CAM-based techniques [17]–[23]. Therefore, model-
specific methods typically require a distinct set of parame-
ters and configurations, necessitating the extraction of this
data from within the model. This limitation restricts their
applicability across various black-box model scenarios. On
the other hand, model-agnostic methods provide explanations
by analyzing the input-output relationship of the AI system
without information about the internal structure of the model.
For example, SHAP [12] and LIME [28], model-agnostic
methods are flexible and can be applied to various black-box
models.

B. Integrating Cloud AI with Post hoc XAI

Cloud AI services encapsulate AI models with well-defined
RESTful APIs [1]–[3]. The opacity of the AI models has

limitations on the comprehension of how the prediction is
made, even though the prediction produces a high accuracy
level. It is a limitation for a certain adoption of the AI services
that has an emphasis on transparency of the AI models.

We use post hoc XAI methods for feature influence and
causality to devise an approximating model that correlates
the inputs and outputs to generate an explanation of feature
contribution values. Following this principle, we consider
computer vision AI service suitable for adopting post hoc XAI
methods for two reasons: (1) A variety of state-of-the-art deep
learning models already exist in the field of computer vision as
standard models. Even if there is no access to the AI models
running within a cloud-based AI service, these established
models can serve as suitable approximations; (2) XAI methods
specifically designed for elucidating computer vision model
explanations are widely available in the literature.

We describe the process and data flow in Figure 2 at the
run-time. The initial step involves the preparation of the input
dataset. Given that cloud model services typically function
as a black box, with internal parameters and model structure
concealed from the user, we employ approximation models.
The original dataset is then used in three distinct steps: 1) Input
images are directly submitted to the cloud-based AI service,
which returns their prediction outcomes. 2) The images are
processed by an approximation model, employing model-
specific XAI methods [17]–[23] to generate salience maps.
3) The original images, overlaid with the salience maps, are
used to create masked images highlighting only the important
features. Subsequently, both the original and masked images
are submitted to the cloud AI service for inference, yielding
model predictions and confidence values. Comparing these two
sets of results allows us to quantify the impact of features. The
minimal variance between the two sets indicates similar feature
importance values. We also evaluate the XAI consistency
metrics, offering insights into the XAI evaluations within cloud
AI services.

In summary, the exploration showed that post hoc XAI
methods, which elucidate the correlation between inputs and
outputs, can approximate feature contributions for cloud AI
services. As illustrated in Figure 2, the workflow produces
explanations for cloud model predictions.
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Fig. 3. Microservice-Based Reference Architecture for XAI Service

V. XAI SERVICE ARCHITECTURE AND API DESIGN

We design the XAI operations as well as comprehensive API
architecture to answer RQ2. This approach led us to define a
reference architecture comprising four distinct layers from top
to bottom. They are the user interface, the coordination center,
the core microservice, and the data persistence. The overview
of this reference architecture is illustrated in Figure 3.

A. API Design for Microservices

One of the key features of this proposed architecture is
its non-intrusive application of XAI methods. This approach
allows us to apply XAI techniques without significantly dis-
rupting or modifying existing system operations. We have
completed the API design for this microservice system, with
these APIs systematically arranged and hosted on Swag-
ger Hub, adhering to OpenAPI 3.0 standards. Detailed API
documentation featuring an array of functional interfaces is
available in our published Swagger document.1.

B. API-based Coordination Center

The coordination center processes requests from the user
interface layer and activates the necessary components for task
execution. The core functions of the coordination center are
managing microservices, overseeing XAI tasks, and retrieving
data.

To manage microservices, the coordination center works
with the user interface to handle service registration and mod-
ification. It logs endpoints and functional types and initiates
the corresponding microservice upon request.

In XAI task management, users submit a task sheet out-
lining the task type (either XAI or evaluation), associated

1https://app.swaggerhub.com/apis-docs/WANGZERUI418/xaiservice/1.0/

microservices, dataset, and specific parameters. The center
oversees the entire task lifecycle, using the submitted task
sheet as a blueprint. During execution, the center accesses
data, activates the necessary service APIs, and ensures task
completion. Upon task completion, the executor updates the
center with the task status, runtime metrics, and provenance
data. Additionally, the coordination center offers a pipeline
configuration that sequences task sheets for standard execution
of XAI and evaluation tasks.

C. Data Processing Microservice

Data Processing serves as a critical component in the system
architecture. It is primarily responsible for managing data
inflow into the system and orchestrating data processing tasks.
This microservice takes into account the need for streamlined
data management, providing interfaces for users to upload their
datasets in specified formats, organize data, and maintain the
consistency and integrity of the data.

Data Processing allows users to not only upload their
data but also assemble them into datasets. Furthermore, it
provides the option to apply data augmentation techniques
to enhance the variability and volume of the original data.
Data augmentation is instrumental in enhancing the robustness
of the AI models and improving the performance of XAI
methods. The Data Processing Microservice stores data in
the user-specified cloud database to ensure data security and
ownership.

This design addresses multiple aspects of data management,
including data import, processing, augmentation, and secure
storage. The incorporation of these features ensures that the
Data Processing Microservice not only maintains the data life-
cycle within the system but also provides users with flexibility
and control over their own data.
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D. AI Model Microservice

The AI Model Microservice is specifically designed to
handle prediction tasks. This microservice is flexible in in-
tegrating various cloud AI services from cloud platforms
including Amazon Web Services, Google Cloud Platform, and
Microsoft Azure. It communicates with these platforms using
their specific APIs, ensuring seamless connectivity and usage
of the cloud AI services. By connecting with these platforms,
users are given access to a broad spectrum of AI models and
tools readily available on the cloud.

Another notable feature of the AI Model Microservice is the
ability to integrate pre-trained models provided by the users.
The integration of user-provided models is facilitated through a
well-defined RESTful API specification. Users need to ensure
their models adhere to this specification, and once that is done,
their models can be easily plugged into the system.

E. XAI Method Microservice

The XAI Method Microservice in the system’s architecture
provides explanations for AI model predictions. These XAI
methods work based on the contributions of individual features
to the final prediction. Once an XAI method is integrated into
the system, it can be repeatedly used for various similar types
of XAI tasks without the need to consider the development
steps again. This approach not only simplifies the procedure
of applying XAI methods but also enhances the efficiency of
the XAI operations.

Furthermore, this microservice provides a seamless connec-
tion with the Data Processing Microservice and the AI Model
Microservice through RESTful APIs. This enables it to access
data and models, generate explanations, and provide users with
comprehensible insights into the AI models.

F. Evaluation Microservice

The Evaluation in the system brings forward a reliable
approach to assess both the AI models and the deployed
XAI methods. It is crucial to guide AI practitioners in their
decision-making process and enhance trust in the AI models
and their explanations. This service is equipped to evaluate the
performance of AI models and XAI methods by examining
the explanation results. It employs the consistency evaluation
method referenced in [8]. This method provides a compre-
hensive evaluation of the stability and reliability of the XAI
methods, thus ensuring that the selected XAI methods yield
consistent explanations.

The results derived from this evaluation are efficiently stored
and maintained for future reference. This also allows for
continuous monitoring and comparison of different models
and methods, paving the way for continuous improvement and
development in the system.

In summary, the proposed architecture provides a compre-
hensive solution for implementing XAI as a service. It consists
of several key components: the User Interface, Coordination
Center, Data Processing Microservice, AI Model Microservice,
XAI Method Microservice, and Evaluation Microservices.
These components work synergistically to enable the effective
execution and evaluation of XAI tasks.

VI. DESIGN PROVENANCE META DATA OF XAI
OPERATIONS

As introduced in RQ3, the purpose of provenance data is to
trace and reproduce XAI operations. The design of microser-
vices brings another benefit in addition to the integration of
heterogeneous components involved in XAI operations. The
design helps us understand the relations of these components,
focusing on their characteristics with abstraction. For example,
we can retrieve the provenance data of two XAI pipelines and
identify the difference in the configuration. This helps trace
and observe how a certain explanation is produced, improving
transparency and trustworthiness.

To this purpose, the provenance data needs to capture the
properties of XAI services, the configuration of XAI tasks and
pipelines, an explanation summary from the XAI method and
the data set, and XAI cross-validation results. We apply graph
format data to organize, visualize, and understand the relations
between XAI provenance data.

Fig. 4. Directed Graph Model of XAI Provenance Data Capturing Microser-
vices, Tasks, and Pipeline Relationships

We model the provenance metadata shown in Figure 4.
The nodes represent types of XAI provenance data, and the
edges represent the relationships between them. There are
four types of microservices as the yellow nodes in the graph-
format provenance data: (1) database, (2) AI, (3) XAI, and (4)
evaluation. These nodes contain the entities that describe the
metadata of the microservices, for example, the unique ID, the
type, the name, and other note information of the microservice.

The task sheets are of two types: (1) XAI task sheets
and (2) evaluation task sheets. The two task sheet nodes
are independent because they deliver different final results,
even though they share certain similar components. They
record the metadata attributes, including the unique ID, the
task type, the task name, the setting parameter, and other
detailed configuration information. When users execute a task
sheet, it generates a unique metadata profile represented as
the violet color nodes. These execution nodes capture details
including the execution ticket, associated task sheet ID, time
of execution, status, results data, and resource consumption.

7



The pipeline node at the bottom of the graph data typically
includes both XAI and evaluation tasks, facilitating compre-
hensive XAI operations for specific scenarios and settings. The
metadata in the pipeline node comprises the pipeline ID, name,
and associated task sheet ID. Initiating the pipeline generates
a pipeline execution node, represented as a distinct node in
the graph-structured provenance data. The pipeline execution
node includes log details. Computational costs are recorded
following the execution.

VII. ARCHITECTURE USAGE: XAI-BASED CLOUD AI
SERVICE DISCOVERY SCENARIOS

The usage of the open API architecture is to obtain ob-
servations from discovery scenarios on (1) Cross-Cloud
AI Service Metrics - assessing AI services perfor-
mance variation across multiple cloud services; (2) XAI
Explanation and Evaluation - feature contribution
explanation and consistency evaluation cross clouds; (3)
Explainability Improvement discovering the impact
of data augmentation on model explainability across clouds;
and (4) Operation Provenance - reproduction of XAI
operations. Our scenarios demonstrate the architecture is cloud
compatible and thus extensible to develop further discovery
scenarios on multiple clouds.

A. The Microservices Configuration and Initialization

This section presents configuration settings of each mi-
croservice in the framework. The database microservice uses
the ImageNet dataset [50], ensuring efficient data storage
and access during testing phases. The model microservice
integrates cloud AI services via Restful APIs. XAI microser-
vices are responsible for generating explanations in saliency
maps. The coordination center effectively manages these di-
verse microservices, ensuring a streamlined execution of tasks
leading to the creation of saliency maps. Our evaluation task
involves validating explanations produced by approximation
models. Additionally, we apply data augmentation techniques
to explore potential improvements in model and XAI perfor-
mance. The source code for implementation of the XAI service
discovery scenarios is available in the GitHub Repository 2.

Database Microservice. We implement the database mi-
croservice using Azure Blob, a cloud database service that
manages data uploading and retrieval for our case studies.

Integrate Cloud AI Service. Incorporating the APIs of
cloud AI models into a microservices infrastructure is crucial
for completing XAI service tasks. Post-hoc XAI methods need
access to AI model results in response to various inputs.
This integration provides a unified interface and pipeline for
executing XAI experiments.

Integrate Pre-trained Models. We employ ResNet [51]
and DenseNet [52] as approximation models due to their
exceptional performance on ImageNet image classification
benchmarks [50]. The pre-trained models are encapsulated
within microservices, and their output is standardized to ensure
compatibility with other services.

2https://github.com/ZeruiW/XAI-Service

XAI Methods Microservice. We interpret image classi-
fication models using CAM-based methods such as Grad-
CAM [17], Grad-CAM++ [18], EigenCAM [20], Layer-
CAM [21], and XGrad-CAM [22]. CAM-based methods gen-
erate saliency maps, offering insights into the attention of the
convolutional neural network during prediction. These maps
highlight key pixels or areas in an image that significantly
influence the prediction results of the model. These meth-
ods are encapsulated into microservices, allowing them to
download model parameters and dispatch explanations through
the coordination center. We establish an API that facilitates
the retrieval of model parameters. This step is critical as it
bridges the gap between the XAI and AI services, which are
standalone applications.

Evaluation Microservice. We have implemented an eval-
uation microservice to assess explanations generated by XAI
methods, using the previously defined evaluation metrics [8].
The stability, as detailed in Section III-B2, forms the
backbone of our evaluative procedures. The evaluation mi-
croservice executes the algorithm and forwards the results
to the coordination center, offering a holistic view of XAI
service performance. This structure enables a comprehensive
assessment of explanations, thereby enhancing the quality
assurance of XAI methods in our framework.

B. Scenario One: XAI Consistency Evaluation

Attribute-based post-hoc XAI methods produce explana-
tions by applying feature masking and mutation, noting
changes in predictions. Evaluating the variation in explanations
across different XAI methods is essential to ensure their
trustworthiness. Trustworthiness and transparency are critical
technical requirements when applying XAI methods to AI
models [53]. Improved flow by rephrasing

As shown in Figure 2, the evaluation consists of three stages,
beginning with the preparation of feature changes. cloud AI
services cannot directly derive saliency maps. To measure
changes from feature masking and mutation, we generate
saliency maps using approximation models, applying an XAI
method. Next, we overlay the saliency maps onto the original
images to create marked images for input into the cloud AI
services. Finally, processing both masked and original images
through cloud AI services generates two sets of predictions.
The differences in predictions are analyzed to explain the
importance of the features identified by the saliency maps, us-
ing XAI. Figure 2 demonstrates the workflow to approximate
feature contribution exploration with evaluation. It should be
noted that the above inputs are from the test datasets, not from
the training dataset. Then, we use the XAI methods and model
predictions to compute prediction changes. Finally, we apply
consistency metrics to provide the summarized evaluation.

1) Selection of Approximation Model: In the initial stage,
we focus on employing a valid approximation model, as
outlined in Figure 2. We consider two candidate approxima-
tion models, ResNet [51] and DenseNet [52]. As a result,
Figure 5 illustrates the comparative analysis of prediction
change values, highlighting the statistical differences between
approximation models. Although the differences in prediction
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change values between ResNet and DenseNet were subtle,
ResNet exhibited lower mean change values during the as-
sessment, indicating superior XAI metrics. Lower computed
prediction change values correlate with better XAI consistency
metrics. Therefore, we selected the better option, ResNet, as
the approximation model for our subsequent analyses.

Fig. 5. Comparison of Prediction Change Values for ResNet and DenseNet
Approximation Models in CAM-based XAI Methods

2) XAI Consistency Evaluation Analysis: We analyze XAI
Consistency Evaluation for Azure Cognitive Services [2],
Google Vertex AI [3], and Amazon Rekognition [1], use
CAM-based XAI methods and measure the explainability.
Subsequently, we aggregate the explanation outcomes across
the dataset.

The detailed statistical analysis is presented in the first
row of Figure 6, where Eigen-CAM displays notably high
prediction change values. The analysis reveals a significant
disparity in the performance of EigenCAM compared to other
CAM-based methods. For EigenCAM specifically, 64.7% of
the data showed prediction changes exceeding half, indicating
that the explanations provided by EigenCAM do not accurately
reflect the model’s predictions. Among other XAI methods,
Layer-CAM performs the best, causing the fewest prediction
changes across the test set. The overall performance of these
four XAI methods remains comparable.

For a precise comparison of the prediction change values
across various XAI methods, we employed the consistency
evaluation Equation 2. The results of this assessment are
displayed only in the top row of Figure 7. This violin plot
presents the consistency metrics for explanations derived using
five CAM-based XAI methods across leading cloud platforms
A smaller value on the y-axis indicates better consistency
evaluation results. Among these five XAI techniques, both
GradCAM++ and LayerCAM show superior consistency met-
rics. Concurrently, as previously observed, EigenCAM exhibits
notably higher values, signifying the worst consistency.

Summary - This scenario demonstrates the practical ap-
plication of the open API architecture, outlined in Section
V. The findings demonstrate that XAI methods exhibit
variability when subjected to the evaluations. Notably,
GradCAM++ and LayerCAM display superior results,
recording the lower values of consistency metrics.

C. Scenario Two: Data Augmentation Effects on Cloud AI
Service Performance

Cloud service platforms such as Microsoft’s Azure Cog-
nitive Services [2], Google’s Vertex AI [3], and Amazon’s
Rekognition [1] offer online AI services, including image
classification models that can be trained with user-provided
datasets. Specifically, Azure Cognitive Services limits the
number of distinct labels to fifty for image classification.

Cloud AI services primarily provide evaluation metrics such
as Precision, Recall, and F1-Score. We devise three cases.
One case uses the original ImageNet dataset without data
augmentation, while the other two apply data augmentation to
the ImageNet dataset. Cloud AI services divide the augmented
data into training and test sets. These services remain as black
boxes.

This scenario is to evaluate the effect of the learning perfor-
mance of these cloud AI services with data augmentation. We
analyze the Precision, Recall, and F1-score metrics, as detailed
in Table II. In particular, data augmentation only reduces
precision in Azure AI service since the precision is already
high without data augmentation. However, in all the other
cases, both CutMix [54] and PuzzleMix [55] augmentation
algorithms improve the Precision, Recall, and F1-score. The
data augmentation improves the overall cloud model perfor-
mance F1 score by 0.11 and 0.13.

Summary - The use of data augmentation without the
expansion of the training dataset reduces the rate of false
negatives and improves the F1-score across three cloud
AI services on the ImageNet dataset.

D. Scenario Three: Data Augmentation Effects on Explana-
tion

Data augmentation is a tool for boosting the performance
of deep learning models by generating a diverse set of syn-
thetic data from existing samples. To further investigate the
performance of XAI methods in more complex scenarios, two
more advanced data augmentation methods, CutMix [54] and
PuzzleMix [55], are introduced and tested in this experiment.
CutMix and PuzzleMix blend images in a patch-wise manner
and rearrange patches from multiple images, respectively.
They have been demonstrated to enhance model performance
significantly [55]. However, the impact of these augmentation
methods on the interpretability of models and the effectiveness
of XAI methods remains unexplored.

We commence our exploration by applying the advanced
data augmentation techniques, CutMix and PuzzleMix, to
our test dataset. The effect of these augmentations on the
AI model’s performance is summarized in Table II. Upon
evaluation of the three cloud AI services, we observe a general
improvement in Precision, Recall, and F1-score metrics under
the application of CutMix and PuzzleMix, echoing the effec-
tiveness of these methods in enhancing model performance as
reported in the literature [55].

The histogram in Figure 6 is the visual representation of
prediction changes of the test data set for the three cloud
AI services. We divide samples into fifty equal bins in the
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Fig. 6. Distribution of Prediction Change Percentages Across Cloud AI Services with Multiple CAM-based XAI Methods

TABLE II
PERFORMANCE METRICS FOR CLOUD-BASED AI SERVICES WITH DIFFERENT DATA AUGMENTATION STRATEGIES

Azure Google AWS
Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

No Augmentation 96.0% 74.6% 0.839 90.5% 41.1% 0.565 82.8% 78.7% 0.807
Cutmix Augmentation 88.3% 87.0% 0.864 94.1% 82.0% 0.876 84.7% 82.5% 0.818
Puzzlemix Augmentation 92.6% 91.0% 0.905 93.5% 81.1% 0.869 85.3% 84.0% 0.828

one thousand images test data set to observe their distribu-
tion. The histogram, Figure 6, illustrates the XAI prediction
change distribution. The middle and bottom rows show that
both CutMix and PuzzleMix data augmentation techniques
significantly enhance the performance of the model compared
to the original dataset. The chart shows that the prediction
change values for both of these augmentation techniques are
smaller than the original dataset, which implies that the XAI
methods can generate explanations that are more aligned with
the original data.

This observation supports the claim that these augmentation
techniques not only enhance the model’s performance but
also improve the explainability of the model. It is particularly
important in practical applications where both the accuracy of
the prediction and model explainability are crucial.

Moreover, the consistency of the XAI methods under these
augmentation techniques, as indicated by Figure 7, further
supports this observation. Consistency here refers to the sta-
bility of the XAI methods in providing explanations for more

data samples. From the figure, it can be seen that the XAI
methods tend to have better consistency with CutMix and
PuzzleMix augmentation compared to the original dataset.
This result discovered that these augmentation techniques
could potentially enhance XAI results.

Combined with the results in Table II. An analysis of tra-
ditional performance metrics such as precision, recall, and F1
score might suggest a minimal effect of the CutMix and Puz-
zleMix data augmentation techniques on model performance.
However, this observation could potentially underestimate the
broader influence of these augmentation techniques. When
examining the outputs of the XAI methods, these augmentation
techniques demonstrate a pronounced enhancement.

Furthermore, through the observation of the histogram Fig-
ure 6, we notice a marked improvement in the performance of
the EigenCAM method after the application of data augmen-
tation. Initially, EigenCAM seemed to provide less consistent
explanations for the original model, as evidenced by the large
prediction change values and bad consistency. This suggested
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Fig. 7. Evaluation of XAI Consistency Across Cloud AI Services Using CAM-based XAI Methods: Lower Mean Values Signify Better Consistency Metric

a significant discrepancy between the identified salient features
and the model’s actual decision-making focus.

However, upon applying the data augmentation techniques,
similar to other applied XAI methods, EigenCAM demon-
strated a marked increase in consistency and accuracy of
the provided explanations. This observation underlines the
potential of data augmentation techniques to significantly
enhance the performance of XAI methods that initially appear
suboptimal. This discovery highlights the need to consider
data augmentation as a valuable tool not only for enhancing
model performance but also for optimizing the explainability
provided by XAI techniques.

The usage of XAI, as illustrated in Figures 6 and 7, unveils
an alternative dimension to this assessment. Through the lens
of XAI, a considerable enhancement in model explainability
is discernible with the data augmentation techniques. This

finding makes it clear that even though data augmentation tech-
niques might not significantly shift conventional performance
metrics, they notably enhance a model’s explainability. This
insight enriches our understanding of the model’s decision-
making process.

Our discovery highlights the importance of comprehen-
sive evaluation strategies. Relying solely on traditional per-
formance metrics might overlook these techniques’ crucial
benefits. In Figure 7. The violin plot’s highlight area represents
the frequency distribution of defined distance values, and the
vertical bars represent the range of the distance value from the
first to the third quartile. The median values are marked and
indicated.

Among the specific XAI methods, the Layer-CAM method
shows the best consistency since it has the smallest medium
and mean values, followed by Grad-CAM++, Grad-CAM, and
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XGrad-CAM, which are slightly less stable but still compa-
rable with LayerCAM. Eigen-CAM shows poor consistency,
and its overall prediction changes value distribution is more
elevated than the other XAI methods.

Summary - The scenario concludes that data augmenta-
tion techniques can enhance explanations from cloud AI
services without altering the model’s structure. XAI con-
sistency values improve by 12.79 and 14.10 respectively.

E. Scenario Four: Reproduction of XAI Explanation

From the scenarios described above, we have experienced
the complexity of XAI evaluation. XAI evaluation extends
beyond merely running a single XAI algorithm. It involves a
complex composition of entities and tasks, including datasets,
feature masking and mutation, data augmentation, benchmark
model approximation, cloud AI services, and various XAI
methods. The scale of these combinations can rapidly escalate
the complexity involved in providing explanations. Tracing
XAI pipelines and ensuring transparency in XAI explanations
are key technical requirements for XAI evaluations. We devise
four cases to demonstrate the XAI pipeline provenance in
our framework design aspects. Figure 8 illustrates the prove-
nance graph of XAI variation using ResNet, Azure Cognitive
Service, and Grad-CAM XAI method. The metadata defined
in section VI become the vertices in the graph. Each edge
in the provenance graph is an API-based service invocation.
A red colored vertex indicates a certain variation introduced
to the configuration of a pipeline. The blue vertices indicate
related vertices in the paths that are affected by the change.
A variation results in a new pipeline graph that represents the
adjustments.

Cross-dataset adaptability. Database microservice is de-
signed to serve data via a RESTful API, integrating with cloud
data storage services, in the case study, Azure Blob Storage. It
ensures the data required by XAI are organized by group and
ready for retrieval. By altering the configuration parameters,
users can invoke alternative cloud databases, enhancing the
system’s flexibility. Case one shows a reference pipeline
configuration. The dataset can be replaced without changing
other configurations in a pipeline.

Configurable model integration Case two illustrates the
necessity for users to replace the model currently in use,
exemplified by replacing the ResNet model with DenseNet. As
indicated by a red node in the graph data, users have the flex-
ibility to configure the model. This modification necessitates
the re-execution of the entire pipeline, resulting in changes
to the content associated with the blue nodes. The graph
provenance data captures and documents user interactions and
the resultant outcomes, providing a detailed account of the
effects of modifications.

Incorporation of data augmentation techniques. Datasets
are labelled with distinct names and group identifiers. This fea-
ture is used to generate augmented datasets by specifying the
original dataset and the augmentation method. The resulting
datasets can then be employed to retrain AI models, providing
enhanced model performance. Case three in Figure 8 shows the

pipeline’s variation with data augmentation applied. Compared
to case one and case two, the vertex CutMix Augmentation is
connected to a new dataset generated DataSet #2.

Extensibility to XAI methods. For attribute-based XAI
methods, the explanation varies by XAI methods for the same
dataset and the same model [56]. With well-structured API in-
terfaces, new XAI methods can be integrated by encapsulating
the input and output conformable to open API specifications.
Case four adopts a different XAI method LayerCAM in the
pipeline compared to Case Three.

Fig. 8. Provenance Graph by XAI Service. Operations using ResNet and
Azure Cognitive Service with Grad-CAM, and explanation evaluation

XAI task reproducibility offers significant benefits in the
domain of services. First, it increases the transparency of the
service by offering a clear understanding of the steps leading
to a specific result. The heightened transparency, in turn,
builds user trust as they can independently verify the results.
Secondly, the service’s adaptability is enhanced. Users can
adjust models or configurations based on previously successful
operations. Thirdly, reproducibility facilitates auditing, which
can lead to further improvements in service reliability and
quality. Provenance data is persistently stored in the cloud-
based, user-configured database. This ensures that the user-
owned provenance data accurately represents the XAI service.

Summary - The XAI service is composition of diverse
cloud databases, data augmentation, and XAI methods.
The provenance of XAI pipelines enables reproducible
XAI processes by re-running the configuration of the
graph-format provenance data. Any changes are tractable
from the pipeline’s configuration which is an encapsula-
tion at the microservice level.
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F. The Discover Scenarios Conclusion

In conclusion, the scenarios we explored manifest the ef-
fectiveness and versatility of our proposed XAI microservice
architecture. This structure is instrumental in facilitating the
evaluation and comparison of various XAI techniques and
cloud-based AI services. We summarize the observations:

• Both CutMix and PuzzleMix data augmentation tech-
niques have been found to significantly improve the
performance metrics (Precision, Recall, and F1-score) of
cloud-based AI services, as demonstrated in Table II.

• The augmentation techniques have been shown to reduce
prediction change values, representing an improvement
of XAI performance, as depicted in Figure 6.

• Traditional performance metrics may understate the
broader benefits of data augmentation techniques. By
considering XAI methods in evaluation, we reveal an
enhanced explainability of AI models, indicating the
augmentation techniques’ potential to create more trust-
worthy AI systems.

• There is an observable improvement in the consistency
of XAI methods under the CutMix and PuzzleMix data
augmentation techniques, as indicated by Figure 7. This
underscores the potential of these techniques in enhancing
XAI results consistency and improving model perfor-
mance.

• Among the selected XAI methods, the consistency of
Layer-CAM outperforms other XAI methods when ap-
plied to Azure Cognitive Service using ResNet, as
demonstrated in Figure 7. Conversely, Eigen-CAM ex-
hibits poor consistency and a higher distribution of pre-
diction change values, indicating lesser reliability.

These insights reinforce the importance of incorporating
XAI methods in the evaluation process to understand the
impact of data augmentation techniques, thereby broadening
our perspective on AI model performance.

VIII. QUANTITATIVE EVALUATION OF XAI SERVICE
PERFORMANCE

Upon completion of the experiments, we delve further
into the evaluation of our XAI service, examining imple-
mentation complexity, computational resource usage, and the
reproducibility of results. These elements play a crucial role
in determining the effectiveness of any service system.

A. The Effort Required for Microservice Development

To evaluate the effort involved in developing the added
microservices, we quantified the Lines of Code (LoC) needed
for integration. Specifically, we focus on the LoC necessary
to incorporate a given model or algorithm into a microservice
architecture using a provided template. Table III presents the
statistical breakdown of this effort.

To perform the migration of pre-existing code into the
microservice architecture, the development process involves
several key steps:

1) Initialize an HTTP server framework as the microser-
vice’s base.

TABLE III
QUANTITATIVE ANALYSIS OF LOC FOR ALGORITHM INTEGRATION INTO

DIFFERENT MICROSERVICES

The
Template

Azure
Cognitive
Service

Google
Vertex AI
AutoML

Amazon
Rekogni-

tion
LoC 76 144 198 148

2) Incorporate the pre-existing code into this server frame-
work as a modular function.

3) Standardize the input: Convert HTTP request data into
a format suitable for the model or function.

4) Standardize the output: Transform the model or function
output into a proper HTTP response and, if necessary,
update the database with the result.

By outlining the development process in this way, we
provide a roadmap for developers who seek to transition from
monolithic or less modular architectures into a microservices
framework.

B. Integration of Methods from Other XAI Frameworks

Fig. 9. Kernel Density Estimation of prediction confidence changes for ’Our
XAI Service’ vs. ’OmniXAI’.

We perform a comparative analysis to showcase the external
XAI tool’s integration capabilities within our XAI service,
with a focus on incorporating the GradCAM [17] method. In
Figure 9, the comparison utilizes ten thousand images from
the ImageNet dataset [50] input to the ResNet model [51].
The Kernel Density Estimation (KDE) plots show a consistent
prediction confidence distribution between our service and
the standalone algorithm from OmniXAI. Our XAI service is
effective in streamlining complex XAI methods via automated
pipelines, simplifying the user experience with the same
algorithm executed. Our service, by offering integration and
RESTful API, makes advanced XAI techniques accessible for
explaining model predictions with less operations.

C. Evaluation of Computational Resources

The concept of computational overhead extends to the re-
sources required for computation on both the server and client
sides. Cloud-based AI services abstract away resource man-
agement complexities, charging users based on API request
count or usage duration. To provide a comprehensive analysis,
we measured computational resources utilized by different
XAI methods. This is particularly pertinent for applications
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that demand real-time responsiveness and for those processing
large datasets. We maintained a consistent infrastructure across
all XAI methods to ensure a fair comparison. Data related
to microservice response time and computational resource
utilization were collected and analyzed. Through code audits
and local tests, we found that resource usage scales linearly
with the workload. Table IV presents a comparative view of
the average energy utilization for different XAI methods and
their corresponding microservices on a per-data-sample basis.

TABLE IV
COMPARATIVE ENERGY CONSUMPTION OF MICROSERVICES (AVERAGE

PER DATA SAMPLE, IN 10−6 KWH)

Microservices CPU
Energy

GPU
Energy

RAM
Energy

Energy
Consumed

Data process 3.60 N/A 0.08 3.68
Resnet model 1.61 3.77 0.02 5.39

Densenet model 0.38 0.89 0.02 1.28
GradCAM 8.32 19.50 0.10 27.91

GradCAM++ 7.09 15.93 0.09 23.11
EigenCAM 121.48 107.54 1.71 230.74
LayerCAM 7.21 10.08 0.09 17.37
XGradCAM 6.77 17.35 0.08 24.20
Evaluation 16.32 N/A 0.17 16.49

From Table IV, we observe that Layer-CAM has the lowest
computational overhead. This suggests that Layer-CAM might
be better suited for systems with limited compute resource
availability. On the other hand, Eigen-CAM shows the highest
computational resource utilization and execution time, in line
with its lower performance in the prediction change and
stability tests.

Overall, these results imply the cost for the quality of the ex-
planations, computational efficiency, and time efficiency. This
indicates that the choice of the XAI method should consider
the specific requirements and constraints of the application.

IX. CONCLUSION

The growth of cloud-based AI brings the urgent need
for explanation in these services. Our study responds to
this necessity by introducing an XAI service architecture.
Utilizing a microservices design, we facilitate the flexible
deployment and evaluation of XAI methods for both pre-
trained and cloud-based AI models. We present a workflow
that retrieves and evaluates feature contribution explanations
for cloud model service. We rigorously evaluated our service
in computer vision scenarios. Importantly, the incorporation of
data augmentation techniques such as CutMix and PuzzleMix
not only increases the performance of the underlying models
but also enhances the quality of these explanations. Our
detailed assessment of computational efficiency highlights the
architecture’s broad applicability across different scenarios and
cloud platforms. A key feature of our service is its prove-
nance data design, making all XAI operations traceable and
reproducible. This work provides a concrete framework that
provides automated XAI to cloud AI services. The principles
and design of our architecture offer a reference for future
developments in the adoption of XAI operations.
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