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Abstract—Explainable Artificial Intelligence (XAI) research
focuses on effective explanation techniques to understand and
build AI models with trust, reliability, safety, and fairness. Fea-
ture importance explanation summarizes feature contributions
for end-users to make model decisions. However, XAI methods
may produce varied summaries that lead to further analysis to
evaluate the consistency across multiple XAI methods on the
same model and data set. This paper defines metrics to measure
the consistency of feature contribution explanation summaries
under feature importance order and saliency map. Driven by
these consistency metrics, we develop an XAI process oriented
on the XAI criterion of feature importance, which performs
a systematical selection of XAI techniques and evaluation of
explanation consistency. We demonstrate the process develop-
ment involving twelve XAI methods on three topics, including a
search ranking system, code vulnerability detection and image
classification. Our contribution is a practical and systematic
process with defined consistency metrics to produce rigorous
feature contribution explanations.

Index Terms—Explainable AI, Feature Importance, XAI Pro-
cess, Machine Learning, Deep Learning

1. Introduction

The topic of “eXplainable Artificial Intelligence (XAI)”
has drawn increasing attention from AI experts and scien-
tists. XAI focuses on various methods that provide a human
understanding of AI models [1], [2], [3]. With the explana-
tions, humans can decide if the AI model is trustworthy.

Academic search engines are always essential as the
priority tools researchers must use. Scientists obtain the lat-
est research progress and inspiration through searching and
reading literature. The Semantic Scholar [4] is a real-world
case of the scientific literature search engine combined with
the Artificial Intelligence (AI) model. A typical question is:
Why does one paper rank higher than the other? Another
question is: Which feature of a paper contributes to the
ranking prediction more?

Natural Language Processing (NLP) has wide applica-
tions. A novel usage for NLP is to detect programming code
vulnerabilities or bugs. Unlike static code analytics tools, the
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AI-powered code vulnerability detector commonly does not
explain the decision-making process. Hence there is a need
to use the XAI techniques to address problems.

Computer Vision (CV) models are commonly studied in
AI. As the complexity of the model increases, the vision
model performs better while losing its interpretability. An
issue often occurs is that the deep learning models could
learn biases from the vast data set. Without explanation
analysis, people cannot find the model’s bias, which cannot
make the model trustworthy.

XAI-related research is still in the stage of early de-
velopment. Many XAI methods focus on solving particular
questions or attributes of the explainability of the specific
type of model. Afterwards, multiple XAI methods may
provide diverse explanations for the same cases. It is hard
to judge which explanation is reliable without evaluation.
With the diversities of XAI methods, the decision to select
an XAI method and the following up development with the
XAI method with the model evaluation is beyond a single
task but involves a complete process.

In this work, We develop an XAI process to provide a
general guideline for XAI practitioners. The current devel-
opment of our XAI process and evaluation metrics mainly
focus on analyzing the XAI methods that generate feature
contribution explanation.

To develop the XAI process for feature contribution
explanation, we derive three research questions:

RQ1: Given the types of XAI methods and diversities
of AI models, what is the basis for the process
development to cover the combination?
The answer to this question analyzes to what extent
the process is subject to the types and attributes of
XAI methods. In Section 3.1 and 3.2, we summarize
the existing XAI goals regarding feature contribution
explanation into a criterion and construct a taxon-
omy for XAI methods as the base of the process.

RQ2: What are the core activities and major entities
produced by those activities in a process definition
for feature contribution explanation?
The process generally has multiple activities, each of
which handles different functionality. The execution
of these activities achieves the XAI goals. In Sec-
tion 3.3, we define a micro process with associated
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activities. We further validate the outputs using three
case studies in the following sections.

RQ3: What metrics for feature contribution explanation
are used to evaluate different XAI methods based
on the measurement derived for explainability?
The metrics are necessary to quantify the compar-
ison among XAI methods. Thus, XAI practitioners
can select a specific XAI method based on the re-
sults of the systematic evaluation. Section 4 presents
clear definitions of feature contribution explanation
consistency in two aspects.

The contribution of this paper is three-fold as follows:

1. We summarize the criterion for feature contribution
explanation. We construct a taxonomy for the state-
of-the-art XAI methods and guide XAI practitioners
in selecting suitable candidate methods for the AI
model explanations.

2. We present an XAI micro process which provides
general guidance to practitioners to achieve AI
model explanation, particularly by feature contribu-
tion. The process enables practitioners to evaluate
and compare their explanation results between mul-
tiple approaches. We define two metrics to assess the
stability and consistency of the feature contribution
explanation methods.

3. We present three case studies to demonstrate the
usage of the process and the assessment of multi-
ple types of feature contribution explanations across
different models. The case studies are a scholarly
literature search ranking model, a natural language
processing classification model, and an image clas-
sification model. We apply the process to these case
studies, get the feature contribution explanations,
and follow the evaluation of stability and consis-
tency.

The following is the organization of this study. Section 2
discusses related works, including the goal of XAI, existing
XAI methods, and evaluation methods. Section 3 presents
the XAI goals definition under the input/output relation
study criterion of XAI. It then summarizes the XAI method
taxonomy based on their properties. Finally, it presents the
XAI process development for feature contribution explana-
tion. Section 4 gives the evaluation metrics definition for
feature contribution explanation consistency. Section 5, 6,
and 7 provide three case studies examining twelve XAI
methods regarding the feature contribution explanation. Fi-
nally, Section 8 concludes our experiment and development
and the further usage and limitations of the XAI process.

2. Related Works

Research on XAI arises regarding the growth of AI
applications in expanding domains. This section discusses
the existing techniques and works regarding the evaluation
metrics of XAI methods to understand SOTA research and
its relevance to XAI practices.

2.1. Methods for Achieving XAI

Generally, there are two main branches of methods for
XAI techniques, namely, building an inherent interpretable
AI model or explaining the model with post-hoc methods.

Algorithms such as linear regression, logistic regression,
and decision tree models are adopted in building an inherent
interpretable AI model for a specific domain [5]. While deep
learning models are hard to be interpreted inherently, this
motivates the development of post-hoc methods.

Post-hoc methods can be classified into model-specific
and model-agnostic methods. The model-specific methods
focus on explaining the specific types of models. A study [6]
initially proposed a technique named Class Activation Map-
ping (CAM) from the global average pooling layer of the
Convolutional Neural Networks (CNN) model. CAM visu-
alizes and highlights the discriminative object parts on any
given image to the CNN model. Afterwards, Grad-CAM [7],
EigenCAM [8], Grad-CAM++ [9], XGrad-CAM [10], and
HiResCAM [11] are a series of methods that solve the
drawbacks of the CAM method, optimize the map and
provide faithfulness.

The model-agnostic methods explain the model by the
model’s input and output. They can be applied to any
model. Some model-agnostic methods are based on rules or
simplified interpretable models for prediction. The decision
set [12] is a framework for independent rules. A model
based on rules and bayesian analysis [13] aims to build
interpretable predictive models.

Alternatively, researchers are focusing on explaining
which feature affects the prediction. Anchor [14] computes
the individual explanations with high-precision rules. The
partial dependence plot (PDP) [15] provides observations
on how the outcome prediction changes with the variation
of a single input feature in the scope of the entire data
set. The computation complexities of PDP are significantly
high because all the data set samples to involve in the
calculation for each example. In addition, the mutual offset
between related features makes PDP unreliable [16]. An
optimized approach of PDP named accumulated local effects
(ALE) plot [16] was proposed. It eliminates the unreliable
bias cases in the PDP method and reduces the computation
complexity, making it possible to apply to large data sets.
These methods explain the model by varying the input
feature and observing the output prediction results. We call
them mutation-based methods.

Shapley Value [17] is a reliable feature attribution
method with a solid theoretical background [18], which
explains a single data sample by calculating the contribu-
tion value for each feature. Another novel and well-known
method, SHAP [19] gives an individual explanation by pre-
dicting the contribution values instead of calculating them.
These methods calculate the feature contribution values by
removing or masking the features. The study [19] defines
these methods as removal-based. This paper summarizes
them as masking-based methods.
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2.2. Assessment of XAI Method

The metrics to assess XAI methods are diverse. A study
[20] introduces the definition of soundness and completeness
as XAI metrics. Soundness indicates if the explanation is
correct. The measurement of soundness requires access to
the ground truth. However, the ground truth of the model
may not always be available. Then, completeness describes
the explanation of the entire task model. Completeness is
an assessment metric for global explanations but is not
necessary for local explanations. A study [21] about an ex-
plainable book search system evaluates the trustworthiness
in terms of the retrieval performance. The system utilizes
three approaches: the ranking by user clicks, questionnaires,
and the user eye tracker system. The ranking results are com-
pared and evaluated for the trustworthiness of explanations.

To assess those metrics, XAI practitioners should con-
duct user studies through interviews or questionnaires. In
our study, we present computational metrics to measure the
performance of the XAI method.

3. The Development of XAI Process

Understanding commonalities and discrepancies of XAI
methods are essential to driving the XAI process. This
section presents a summarized XAI criterion from the XAI
works. Then, Figure 1 shows a taxonomy of XAI methods,
which guides the definition of a general-purpose XAI pro-
cess. Finally, an XAI process for the feature contribution
explanation is presented in Figure 2.

3.1. XAI Criterion: Input/Output Relation (RQ1)

To develop an XAI process, we need to establish the
criteria to evaluate the process outcome. The criterion is
discovering the logic between a model’s inputs and outputs.
It matches the following XAI goals, including:

Feature Influence. This goal quantifies the correlation
between predictive features and class variables in learning.
The influence of the input features does not directly reveal
the underlying mechanism of an AI model. Instead, it helps
quantify the importance of features and further improves the
quality of feature selection.

Feature Causality. This goal focuses on the causal rela-
tions between predictive features and class variables. For ex-
ample, the objective in the image classification case presents
causality between feature and prediction. The causal effects
help to discover the underlying mechanism of an AI model.

3.2. XAI Taxonomy (RQ1)

We organize the XAI methods into a taxonomy, as shown
in Figure 1. The taxonomy has a tree-based topology to
structure the levels of categories. The main categories are
building interpretable models and using post-hoc XAI meth-
ods. Under the post-hoc methods, practitioners generate the
explanation with model-specific or model-agnostic methods.

The model-specific methods are developed based on the
specific structures of machine learning models. The model-
agnostic methods apply the techniques, including explaining
the feature importance, data visualization, and model sim-
plification. The developed XAI taxonomy answer the first
research question. The category allows adding new methods
developed in the future. We describe the branches of the
taxonomy structure as follows.

3.2.1. Build Interpretable Models. The interpretable
model allows extracting decision rules from the model
structure. The machine learning algorithms such as Linear
regression, Logistic regression, Decision trees and Decision
rules are commonly used to develop interpretable models.

3.2.2. Post-hoc Explanation Methods. Post-hoc XAI
methods aim to extract relationships between feature values
and predictions. Models such as deep neural networks are
not usually interpretable since the decision rules can not be
directly extracted from the model structure. In terms of the
ways to approximate the model’s behaviour to understand
decisions, the taxonomy has branches as model-specific and
model-agnostic methods.

3.2.3. Model-specific Methods. Model-specific methods
mean the XAI techniques apply to specific contexts and
conditions. Those techniques use the properties of the un-
derlying algorithm or specific structure of an AI model.
Reverse engineering approaches are applied to probe the
internals of algorithms. Grad-CAM [7] methods provide vi-
sual explanations for convolutional neural network models.
The CAM-based methods produce a localization map from
a convolutional layer showing the essential regions in the
image for predicting the concept. A Layer-wise Relevance
Propagation [22] is used for recurrent neural network expla-
nation. Methods such as EfficientNET [23], and Axiomatic
Attribution [24] are also used for explaining CNN models.

3.2.4. Model-agnostic Methods. Model-agnostic methods
focus on relations between feature values and prediction
results. Under this classification, we further distinguish the
XAI methods by how they present the explanations.

Explaining by Visualization. This kind of method sum-
marizes visual tools to help humans understand model be-
haviours. An obvious example is that explanations illustrate
the image sample or data set by highlighting and visualizing
the relevant feature area.

Explaining by Feature Importance. This class indi-
cates methods that explain the influence of the features for
prediction based on the feature masking method or feature
mutation method.

Feature Masking. Feature masking methods remove
the input feature or set the element to the default value.
The idea is to observe how the model predicts with the
masked information. A framework [19] for the XAI method
associated with removing features presents the choices made
by the removal-based explanations.
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Feature Mutation. Feature mutation methods assign
other values from the data set to replace one or a few
input feature values and show how the individual prediction
changes according to the data variation. For example, the
partial dependence plot [15] shows the mutation impact of
one feature on the model’s outcomes.

Explaining by Simplification. Explaining by simplifica-
tion means training another interpretable model to describe
the current complex black-box model. It contains two groups
of methods, the Rule-based Learner and the Additional
Interpretable Model.

Rule-based Learner. Decision sets [12], and their
variants are sets of classification rules. Rule-based models
are initially developed as decision rules that explain how
they reach a particular prediction. By understanding the
branches of these decisions, humans can understand the path
for predictions.

Additional Interpretable Model. The methods explain
the black-box classification model by training another in-
terpretable model. For example, the Local Interpretable
Model-Agnostic Explanations (LIME) [25] build simple lin-
ear models around the predictions to provide explanations.
Anchor [14] gives individual explanations with new high-
precision rules. These methods can only supply local expla-
nations.

In the experiments, we prepare three case studies for
the XAI process. Altogether, we have twelve XAI meth-
ods deployed. These are six Model-agnostic methods that
contain both feature masking methods and feature mutation
methods. The six Model-specific methods are CAM-based
for the CNN model. We indicate our selection path with
grey background in the boxes and the bold lines in Figure
1.

3.3. XAI Process Development for Feature Contri-
bution Explanation (RQ2)

The XAI process development focuses on the explana-
tion activities and the essential data flow. We present the core
activity associated with the second research question for
feature contribution explanation. We identify the significant
activities and structure them as an XAI process shown in
Figure 2. In the following part of this section, We present the
main functionality of each task and the data flow between
tasks.

3.3.1. Select XAI Method. XAI practitioners explore mul-
tiple XAI methods through the taxonomy and identify those
to fulfill the XAI criterion. For instance, Accumulated Local
Effects (ALE) [16] and Partial Dependence Plot (PDP) [15]
both are feature mutation methods by calculate the varied
feature values affect the prediction. ALE accumulates the
effects of feature value variation within a well-separated
interval, while PDP captures the effects of feature value
variation within the entire feature space. ALE is a faster and
unbiased alternative to the PDP method, but this does not
indicate that it is the default better choice. If the practitioners
can not find the proper order of the categorical feature of

the target model, they can not explain this feature with ALE
since ALE can only be executed on the ordered feature
space. Another example is the method of “Model Class
Reliance for Feature Importance Estimation [26]”. Such a
method requires actual outcomes of the data samples to
calculate the expected loss values to generate the expla-
nation. With the selection of multiple XAI methods, XAI
practitioners should follow the process and evaluate the
explanation consistency for these methods.

3.3.2. Develop XAI Method. Adopting a selected XAI
method may further customize the implementation in align-
ment with the AI model and the data set. Customization
is a form of general software configuration. Therefore the
practices and tools in software configuration management
can be referred to and applied. We omit the details in the
discussion. During the execution of XAI methods, hyper-
parameter searching and tuning are necessary to gain opti-
mal performance. In addition, cross-validation is essential if
the data set may incur unbalanced results for XAI evalua-
tion. One way is to execute the XAI methods with segments
of the input data and observe the variation of the XAI results.

3.3.3. Define Explanation Consistency. The same input
data set explained by various XAI techniques may yield in-
consistent results. Hence we derive explanation consistency
as an evaluation metric. The XAI results consistency brings
trust to the XAI practitioners. In this work, we present the
definition of consistent evaluation in section 4 and set it as
a unit in the process.

3.3.4. Process Data and Execute XAI method. The data
processing activity is to perform data cleaning, extraction,
segmentation and classification in preparing the data format
and quality suitable to an XAI method. In addition to those
tasks akin to data preprocessing for model training, the
data preparation is also under requirements imposed by the
selected criterion. For example, the original data may lead
to unbalanced result distribution, which is unsuitable for
inputting directly into an XAI method for evaluation. Hence
the data preparation needs to perform extra tasks such as
classifying the data sets whose results of XAI methods are
more balanced. Then, what follows is the execution of XAI
methods. The XAI methods produce explanation results.

3.3.5. Present Explanation Summary and Evaluate Con-
sistency. The process presents the output after XAI runtime.
Besides analysis utilizing statistics, tables, or graph plots,
the result should be further unified and summarized to
match the evaluation metrics. Then, the process validates
the results with the defined explanation consistency. Suppose
the consistency level does not satisfy the explanation. XAI
practitioners may select another XAI method and repeat
another round of the process. If the consistency level meets
the evaluation, the method can be present for this model and
data set. Then the explanation results can conclude.
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Figure 1: Taxonomy of explainable AI methods.

Figure 2: A feature contribution explanation micro process: main activities

4. Metric Definition for XAI Method (RQ3)

We focus on the metrics to measure, observe and evalu-
ate the XAI explanation on the same data set across multiple
XAI methods and the explanation on multiple data sets
generated by the same XAI method. We aim to define
the unified metrics that cover the above three scenarios.
According to the process definition, the XAI criterion leads
to consistency metrics.

4.1. Derive Feature Contribution Value and Expla-
nation Summary

For the explanation that can not be used to build a new
data instance, such as ALE explanation or Anchor expla-
nation, we derive the feature contribution value for each
feature by aggregating the raw explanation result, and we
further derive the explanation summary from those values.
Suppose < ex

[1]

j , ex
[2]

j , . . . , ex
[n]

j > is the raw explanations
for feature j on the given data set X . The feature contri-
bution value φj(eXj ) could be the absolute mean value of

the eXj . The first and second case studies in Section 5 and
Section 6 derive the feature contribution value φj(eXj ) by
such aggregation. By ranking features’ contribution values
in descending order, we derive the feature importance order
on each data set as the explanation summary.

For the explanation that can be used to build a new data
instance, such as saliency map explanation from CAM-based
methods, we derive the explanation summary directly by cal-
culating the prediction difference between the original data
instance and the new-built data instance. Consider f̂(x[i]) is
the model prediction on instance x[i] < x

[i]
1 , x

[i]
2 , . . . , x

[i]
p >,

where p is the number of features. x[i]+ represents the
instance x[i] under a transformation such as an image with
masks. Suppose S is the subset of all the features that we
are interested in their feature importance. j is a feature
that belongs to S. R contains the rest of the features, and
P = S ∪ R makes the whole features P . By marginalizing
over features R, the prediction depends on features in S,
including the interactions with other features in R. For
each instance x of the data set, we define the prediction
difference caused by the feature j ∈ S of interest as the
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absolute difference in Equation 1 and the relative difference
in Equation 2 respectively.

δx
[i]

j |abs = |f̂S(x[i])− f̂P (x[i])| (1)

and

δx
[i]

j |rel =

∣∣∣∣∣ f̂S(x[i]+)− f̂P (x[i])f̂P (x[i])

∣∣∣∣∣ (2)

Such prediction difference of the given data instance can
be used as the explanation summary. For the third case
study in Section 7, multiple XAI methods are applied to
the same model prediction on the same data set. The XAI
methods produce saliency maps as an explanation, which are
used to transform an original image into a masked image
for prediction. The explanation summary is computed by
Equation 2.

4.2. Explanation Summary Distance

So far, we have set up the one-on-one mapping between
an explanation summary and the feature contribution values
regardless of the form of an explanation summary. Hence
we define the metric distance to measure the difference
between any pair of explanation summaries. Suppose there
are m explanation summaries. The set E contains all the
explanation summaries, E = {ε1, ε2, . . . , εm}. Then the
distance between any two pairs of summaries is defined
as fd(ε

i, εj). The choice of selecting any pair of sum-
maries in E = {ε1, ε2, . . . , εm} has the combination of
K =

(
m
2

)
. Each choice k produces a distance value as

f
[k]
d (εi, εj), (i 6= j, i ≤ m, j ≤ m). The shorter the distance

value, the more consistent the XAI explanation summaries
are on two data sets. We can now observe and evaluate XAI
explanation summaries at two levels, namely explanation
stability and explanation consistency as follows.

4.2.1. Explanation Stability. Explanation stability repre-
sents the intra-XAI method explanation consistency. When
an XAI method is applied to the model prediction with
multiple data sets, each data set has an explanation summary
produced by the same XAI method.

We use a violin plot to observe the explanation stability
to visualize the distance distribution and probability density
of K =

(
m
2

)
number of distance values. We further aggre-

gate the mean distance value for one XAI method across
multiple data sets as follows.:

fKd =
1

K

K∑
k=1

f
[k]
d (εi, εj), (i 6= j, i ≤ m, j ≤ m) (3)

4.2.2. Explanation Consistency. Explanation consistency
presents the inter-XAI explanation consistency across multi-
ple XAI methods on the same data set. It compares different
XAI methods’ explanation summaries. Here the number m
of explanation summaries are generated from m numbers of
XAI methods on the same data set, E = {ε1, ε2, . . . , εm}.
For each XAI method I , we compute the distance of its

explanation εI to other m−1 XAI methods, which produces
m − 1 numbers of distance values f [k]d (εI , εj), (I 6= j, I ≤
m, j ≤ m, k = 1, 2, ...,m− 1).

Likewise, a violin plot can be applied to visualize the
distance distribution and probability density of m−1 number
of distance values for each XAI method to observe the
explanation consistency across XAI methods. We further
aggregate the mean distance value for one XAI method I ,
compared with other m− 1 XAI methods on the same data
set as follows:

f Id =
1

m− 1

m−1∑
k=1

f
[k]
d (εI , εj), (I 6= j, I ≤ m, j ≤ m) (4)

Considering the complex comparison scenario under L
numbers of data sets, we compute the inter-XAI method
explanation distance using Equation 4 for each data set. We
finally collect (m−1)×L distance data plots for each XAI
method to visualize using the violin plot and compute the
mean distance values of (m− 1)× L data instances.

5. Case Study I: Academic Paper Ranker

The first case study explains the academic papers rank-
ing model, a black-box model with tabular inputs. We select
four XAI methods: ALE, Shapley Value, Anchor, and SHAP
to derive the overall feature importance order. We evaluate
those methods by explanation stability and explanation con-
sistency.

5.1. Model and Data

The target model is an open-source machine learn-
ing ranking model called “s2search” [27] from Semantic
Scholar [4], a scientific literature search engine. s2search
model ranks papers according to the collected user be-
haviour data, such as search logs and user clicks. For the
data set, we choose the arXiv data set [28] meta topics as
classification labels under the field of Computer Science.
We use the subset with secondary categories of Computer
Science provided by arXiv. Each paper is categorized with
one or more meta topics. Finally, we have thirty-eight data
sets categorized by arXiv with 542,877 papers’ metadata for
the case study experiment. In this case study, our objective is
to determine the order of the importance of the six features
:title, abstract, venue, authors, year, n citations.

5.2. Explanation Consistency Analysis

According to the taxonomy in Figure 1, we select ALE,
Shapley Value, Anchor, and SHAP to derive feature im-
portance order for the black-box model. We develop the
software solution for the four XAI methods. The source code
is available from this GitHub repository1.

1. https://github.com/youyinnn/s2search
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5.2.1. Summary from Feature Importance Order. For all
methods that we selected, we define the feature contribution
value for feature j over data set X as:

φj(e
X
j ) =

1

n

n∑
i=1

|ex
[i]

j |

where the ex
[i]

j is the raw explanation for feature j on data
sample x[i]. For the ALE explanation, the local effect for
each data instance will be the ex

[i]

j . For the Shapley Value
or SHAP explanation on data sample x[i], we set each
contribution value from it for feature j as ex

[i]

j . For the
Anchor explanation on each data sample x[i], we set the
partial precision value for feature j as ex

[i]

j . Repeating this
process to every feature and get feature contribution values
over the data set X . For thirty-eight data sets, we get thirty-
eight groups of feature contribution values for each method.
We take the mean value of those thirty-eight groups of
values as the overall feature contribution value, and further
derive the overall feature importance order explained by
each method. The results are listed in Table 1.

5.2.2. Stability Observation. To observe the explanation
stability, we run each XAI method on thirty-eight data sets.
This experiment produces thirty-eight feature importance
orders as the explanation summaries. We apply Kendall
tau Distance algorithm as the distance function to compute
f
[k]
d (εi, εj), (i 6= j, i ≤ 38, j ≤ 38). By Equation 3, we

compute 703 distances for each XAI method and produce
the violin plot with mean value bar depicted in Figure 3.
The result indicates that the ALE method has the lowest
mean value on the stability metric.

5.2.3. Consistency Observation. We select ALE as the
baseline more for inter-XAI method consistency observation
since ALE performs better in term of method stability across
multiple data sets on the same prediction model. To calculate
the consistency between the ALE method and other meth-
ods, we use the Equation 4 with the Kendall tau Distance
algorithm as the distance function f

[k]
d (εALE , εj), (I 6=

j, j ≤ 4, k = 1, 2, 3). Figure 3b reads as the explanation
difference between Shapley Value and ALE, Anchor and
ALE, and SHAP and ALE in term of distances measured
on thirty-eight explanation summaries. Shapley Value and
SHAP has approximate mean distance values compared to
ALE. The plot indicates Shapley Value and SHAP produce
more consistent explanation with ALE than Anchor does.

6. Case Study II: Code Vulnerability Classifier

Popular code vulnerability data sets like the Open Web
Application Security Project (OWASP) [29] Benchmark and
Juliet test suite [30] provide a reliable training corpus. These
data sets contain mined method-level software code files
with the Common Weakness Enumeration (CWE) labels.
The code files usually contain the code comments, code
body, and import packages. A class of technique is that

(a) Stability

(b) Consistency

Figure 3: (a) Explanation stability for each method where
the mean value indicates the stability. (b) Explanation con-
sistency between ALE and other methods. The green line
indicates the mean value.

machine learning models treat the code file as the text
content and classify it into different CWE labels. It is a
natural language processing classification problem. In this
case study, we observe whether machine learning models
capture semantics from code bodies, code comments or
import packages and make the classification decision.

6.1. Model and Data

The data sets are from The Open Web Application
Security Project (OWASP) Benchmark [29] and Juliet test
suite [30] for Java. OWASP Benchmark contains 2,740 test
cases with 52% files of vulnerable code and 48% non-
vulnerable files. The 52% vulnerable files contain 11 CWE
(Common Weakness Enumeration) labels. The Juliet test
suite contains 217 vulnerable and 297 non-vulnerable files
with 112 different CWE labels. The CWE labels are the
ground truth for multiclass classification.

We practice this case study with the state-of-the-art
Natural Language Processing (NLP) model XLNet [31]. It
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TABLE 1: Feature contribution explanation summary derived from feature importance order for each method

Method Overall Feature Importance Order
ALE abstract(5.4923) title(2.6864) venue(2.5473) year(0.506) n citations(0.266) authors(0.2504)

Shapley Value abstract(5.4701) title(1.6359) year(1.0298) venue(0.8989) n citations(0.171) authors(0.0987)
Anchor abstract(0.4659) year(0.1724) title(0.1592) venue(0.0853) n citations(0.0461) authors(0.0074)
SHAP abstract(4.5293) title(1.2729) year(0.8781) venue(0.7461) n citations(0.1473) authors(0.0899)

is a model that could capture bi-directional text information
and outperform other state-of-the-art NLP models. Each text
content in a code file containing a method with a CWE
label is considered the data instance and the label pair. To
observe which part of these contexts highly impacts the
machine learning classifier, we identify three features in the
data: comments, code body and import packages. Comments
contain the file description and the code comments. Further,
the description comment of the Juliet test case includes
the CWE types directly. We remove this content to avoid
data leakage during the model’s training. Data leakage is
defined as unintentionally leaking the signal. In our case,
the CWE type content to the model potentially increases the
accuracy [25]. We directly remove one of the three features
and remain the other two features to get the prediction from
the model as masked the feature.

The label distributions in both data sets are also unbal-
anced, and the non-vulnerable code accounts for over 50%.
In practice, we combine labels whose numbers count less
than ten percent of the total size and generate four labels
for both data sets.

The Juliet test case for Java and the OWASP Benchmark
test suite are treated as two data sets to perform the experi-
ments. We shuffle each data set into a training set and testing
set by the percentage of eighty and twenty. The training set
is used for fine-tuning the XLNet model. The testing set is
used for the masking feature and collects the prediction for
XAI processing. The features are removed before input to
XLNet model [31] to output the log-odd probability of the
ground truth CWE label.

6.2. Explanation Consistency Analysis

Under the objective of the case study, observing which
feature among the three features affects the most model
deciding, we select methods that could reflect the feature in-
fluence. Meanwhile, features in text content can be evaluated
by masking. We pick up Shapley Value [17], SHAP [19],
Preddiff [32] and Mean-Centroid Preddiff [33] to perform
the feature masking-based explanation.

6.2.1. Summary from Feature Importance Order. In this
case, the way of deriving the explanation summary for the
Shapley Value, SHAP, and Prediff method is the same as
we did in the first case study. For Mean-Centroid Prediff
method, the raw explanation for each data instance is the
prediction difference in paper [33] as δx

[i]

j . This method
computes feature contribution value φj(δXj ) as the tangent
value of the centroid point of clusters formed by the data

instances of δx
[i]

j . Then, we derive the feature importance
order for the two data sets in Table 2.

6.2.2. Stability Observation. In this case, we only have
two data sets. Hence the explanation stability metric value
of Shapley Value and SHAP method is 0 since their feature
importance order in the two data sets are the same. For
Prediff and Mean-Centroid Prediff, it is 0.67. The result
indicates that the Shapley Value and SHAP method are
considered more stable than the Prediff and the Mean-
Centroid Prediff method.

6.2.3. Consistency Observation. The feature importance
order results of four XAI methods are consistent for Juliet
test cases. comment has the most importance than code
and import. Each method has a zero Kendall tau distance
with other methods. For the OWASP Benchmark data set,
Preddiff and Mean-Centriod Preddiff have different insights
on features. Measuring by Kendall tau distance, we calculate
the average feature importance order distance for Preddiff
and Mean-Centroid Preddiff are 0.33 from the other two
methods. We observe Shapley Value and SHAP achieve a
higher consistency.

7. Case Study III: Image Classifier

The third case study explains the image classifier model
with tabular inputs. The selected XAI methods for computer
vision are all model-specific. We select six pixel-attribution
methods, all CAM-based methods and further evaluate them
with our defined metrics over 1,000 image data.

7.1. Model and Data

We select the public-released pre-trained CNN model
called ResNet50 [34] from Pytorch2 on the data set
Imagenet-1000. The pre-trained model is used for image
classification on 1,000 classes. We sampled 1,000 image
data from the validation set of ImageNet3.

7.2. Explanation Consistency Analysis

We consider the model-specific XAI method for CNN
model and also the pixel-attribution methods that can pro-
duce explanations reflecting the active region of the image.
According to the taxonomy in Figure 1, we select the Grad-
CAM method first and we also identify other CAM-based

2. https://pytorch.org/hub/nvidia deeplearningexamples resnet50/
3. https://www.image-net.org/
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TABLE 2: Feature importance order summary of code vulnerability detection case study

XAI Methods Juliet test cases for Java OWASP Benchmark
Preddiff comment > code > import code > import > comment

Mean-Centroid Preddiff comment > code > import code > import > comment

Shapley Value comment > code > import comment > code > import

SHAP comment > code > import comment > code > import

method, namely, EigenCAM [8], Grad-CAM++ [9], Grad-
CAMEW, XGrad-CAM [10], and HiResCAM [11]. The
implemetation of those methods are public accessible at this
GitHub repository4.

7.2.1. Summary from Prediction Change Aggregation.
Suppose the f̂P (x[i]) is the model prediction on the original
image x[i] and the f̂S(x[i]+) is the model prediction on the
masked image where x[i]+ is the masked image transformed
from saliency map ρ(x[i]) of the original image. Figure 4
shows the example of deriving the prediction change value.
For all the selected CAM-based methods, we define the

(a) original image (b) saliency map (c) masked image

Figure 4: Images of the original image, saliency map gener-
ated by Grad-CAM method, and masked image. The ground
truth label for the original image is “collie”. The prediction
score is 7.5674 on the original and is 5.4336 on the masked.
Hence the prediction change is 28.17%.

prediction change on data sample x[i] with Equation 2 as:

| f̂S(x[i]+)−f̂P (x[i])

f̂P (x[i])
| × 100, (x[i]+ ← ρ(x[i]))

We then get all the prediction changes on data set X for
each method.

7.2.2. Stability Observation. To derive the stability metric
in this case, we set each prediction change on the data
sample as one summary and get the distances of any two
pairs of the prediction change with the distance function
f̂d(εi, εj) = |εj − εj |. Figure 5a shows the distribution
of the distances between the prediction changes. By using
Equation 3, we evaluate the stability for a method. As can be
observed, the Grad-CAMEW method has the lowest mean
value on the stability metric.

7.2.3. Consistency Observation. To calculate the consis-
tency between Grad-CAMEW method and the other meth-
ods, we use the Equation 4 with the distance function
f̂d(εi, εj) = |εi − εj |. Figure 5b shows the distribution of
consistency over 1,000 images.

4. https://github.com/jacobgil/pytorch-grad-cam

(a) Stability

(b) Consistency

Figure 5: (a) Explanation stability for each method where
the mean value indicates the stability. (b) Explanation con-
sistency between Grad-CAMEW and other methods. The
green line indicates the mean value.

8. Conclusion

This paper proposes a micro process for structuring
the activities, entities and artifacts essential to an XAI
project for feature contribution analysis. We analyze the
state-of-the-art XAI goals and derive criteria. We define
a taxonomy as the basis of developing the XAI process.
The micro process has the benefit of producing instances
of XAI according to the data set classes and methods. We
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define two explanation consistency metrics by analyzing the
explanation generation consistency within and across the
methods. Thus, it becomes practical for large-scale evalu-
ation of such XAI projects. We provide three use cases for
explaining an AI-powered scholar literature ranking model,
an NLP code vulnerability detection model, and an image
classification model. The first case study performs a total
of 152 experiments with four instances of the XAI process.
Each instance maps to one XAI method and runs thirty-
eight classes of data sets which include 542,877 papers.
The second case study performs feature contribution ex-
planation analysis on the NLP classification model with
also four instances of the XAI process. The third case
study reaches the problem of image classification. Hence,
the detailed implementation of the metric evaluation differs
from the previous two cases while we conduct six instances
of the XAI process. The feature contribution analysis micro-
process becomes the composition unit for large-scale XAI
projects with large-scale data sets and many target models.
Future work could develop the comprehensive XAI process
for more kinds of XAI goals and different kinds of XAI
methods. More explanation evaluation metrics could be
identified to discover different characteristics of the XAI
method.
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