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Introduction to Explainable Al (XAl)

Explainable Al (XAIl): The methods and techniques that provide insights into the decision-making
processes of Al models, allowing users to comprehend and trust the results and actions of Al systems.

Research Questions

 RQ1: Are the explanation deviation generated by XAl methods variable across models with
different structures?

 RQ2: What Is the relationship between computational cost and explanation deviation in model-
XAl combinations?
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Introduction to Adversarial Attacks Assessment Scenarios

Figure 3. The Taxonomy of XAl Methods.
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Figure 7. Assessment Pipelines for Open-source Al Model Quality Attributes. Lower Values Indicate Better Explanation Deviation.
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