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INTRODUCTION

METHODOLOGY

The Need for Explainable Al (XAl) in Cloud Al Services:
« The current state of Cloud Al services is broad usage but lacks transparency and explainability.

 The Cloud Al services only provide general performance metrics but remain opaque on how the
prediction Is produced.

The Challenge of XAl for Cloud Al Services:

* Need of explanation results without unfolding the network structure of the learning model.
o XAl operations should be assessable at the same stage as learning performance evaluation.
XAl-as-a-Service:

* Designed using a microservice architecture to integrate Al models and XAl methods.

o Collect provenance data from XAl operations to enable traceability.

Case Studies:

* Results demonstrate the ability to generate reliable explanations for cloud Al services.

« Evaluation comprises XAl results evaluation and system-level evaluation.
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RESEARCH QUESTIONS

 RQ1: What are the key components for an XAl service capable of handling diverse Al

XAI Service is Built on a Four-layered Microservice Architecture:
o User Interface: Allows users to view, access data, set up, and execute tasks.

« Coordination Center: Recelves user reguests, manages microservices, handles data representation,
prepares data provenance, and evaluates the system performance.

 Microservice Layer: Encapsulates Al models, XAl methods, data provenance, and evaluations.
o Data Persistence Layer: Manages and stores datasets, operation data, XAl results, and evaluations.
See Figure 1 for a visual representation of the XAl service API architecture.

CASE STUDY RESULTS

TABLE II
CAM-BASED PREDICTION CHANGES DISTRIBUTION STATISTIC

The case study utilizes the ImageNet dataset to

Statistics Efff é::f;ir Pigen- - Lavers Xéﬁf’ perform XAl methods on Cloud Al services.
CAM-based XAI methods using ResNet Results show Varying prediction changes of
Mean | 27.0461 259198 632657  25.5333  27.0476 different XAl methods, offering insights into the
STD @ | 265806 259853 347627  25.7503  26.5802 explanation results.
Pas b 18230  4.6346  29.8233  4.6865  4.8394
Pso b 17.3631 159730  76.7189  15.8819  17.3631
Prs ° | 435777 407204 951838 393082 435777 This table illustrates prediction changes
_ CAM-based XAT methods using DenseNet statistics for five distinct CAM-based methods.
Mean | 255995 264856 693031 269097  36.1336 .
STD e | 251781 255827 319986 254721  29.4764 The _smaller Fhe prediction - changes  after
Pos ® 51250  5.6601 434602 65918  8.5504 masking, the higher the XAl result accuracy.
Py b 1642890 181160  85.6432 185324 294022 Thus, this table serves as a valuable guide for
Prs b | 388719 419311 955513 421751  61.8364 assessing each method.
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« RQ3: What's an efficient strategy for integrating XAl with cloud Al services, RESTIW AP Web Portal (o) ./ pipsiine | | | |
: : : : : or User N has Execution Figure 3. Response time of XAl microservices
managing custom data, and executing diverse tasks for reliable explanations? T T - for varying sample sizes
« RQ4: How can XAl service guarantee reproducible explanation results, boosting fgg‘;;f-p::\fe?]‘;ﬂiz 32?:‘1995 definition The chart visualizes the relationship between the
s nhility i T 000 _ : response time of various XAl microservices and the size
transparency and reliability in Al decision-making’ Coordination Center | 000 This robust, structured provenance data of input samples. Each curve represents a distinct XAl
central_endpoint/task_publisher/ | 000 representation enhances reproducibility, allowing method, demonstrating its performance scalability with

for precise replication of settings and procedures. increasing data volume.
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RELATED WORKS

TABLE 1
COMPARISON OF XAI FRAMEWORKS

Framework Publisher Supported Data Supported XAI Results Presen- Results Deployment Compatibility
Types Methods tation Evaluation with  cloud
Al services
Dalex [1] Warsaw Tabular 1,2,3, 4,5 Plot/Array No Standalone  Lacks explicit
University cloud support
Explainability = IBM Tabular/Image 1, 2,6 Plot/Dashboard No Docker Lacks explicit
360 [2] /Text cloud support
InterpretML Microsoft Tabular/Text I, 2, 3, 10 Plot/Dashboard No Standalone  Lacks explicit
[3] cloud support
Captum [4] Meta Images/Text 1,2,6,7,8 Attribution Plot Robustness  Standalone  Lacks explicit
Metrics cloud support
OmniXAl [5] Salesforce Tabular/Image 1,2,3,4,5,6,7, Plot/ Dashboard No BentoML Lacks explicit
[Text/Timeseries 8, 9 cloud support
Vertex XAl Google Tabular/Image 1, 2,8 Attribution Plot No Vertex Al Vertex Al
/Text
XAI service This work  Tabular/Image 1,2,3,4,5,7 Plot/Dashboard/ Consistency Docker Compatible
/Text Result data Metrics API

Supported XAl Methods: 1. LIME (Local Interpretable Model-agnostic Explanations) [6], 2. SHAP (SHapley Additive
exPlanations) [7], 3. PDP (Partial Dependence Plots) [8], 4. ICE (Individual Conditional Expectation) [9], 5. ALE
(Accumulated Local Effects) [10], 6. LRP (Layer-wise Relevance Propagation) [11], 7. CAM (Class Activation Mapping)
[12], 8.Integrated Gradients [13], 9. Counterfactual Explanations [14], 10. Decision Rules [15]
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