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Abstract—The adoption of AI systems has been
widely used across multiple industry domains at an
alerting rate without focusing on its ethical concerns. In
order to address those concerns, an increasing number
of AI ethics frameworks have been suggested recently,
which focus on the algorithmic level rather than the sys-
tems level. Nonetheless, some system-level approaches
mostly cover a single-level governance pattern of the
system components in the entire software design life
cycle. However, the need to go beyond the single-
level system design AI ethics frameworks to allow
not only a better responsible-AI-by-design but also a
trustworthy process pattern that abstracts and links
the underlying layers of responsible AI on every level.
This paper illustrates a principal-to-practice guide of
the multi-level governance within organizations across
the globe for AI ethics frameworks.We outline the main
gap areas in organizations for AI ethics frameworks.
Consecutively, we propose a multi-level governance
pattern for responsible AI systems within organizations
which is participatory, iterative, flexible and operable
that targets those main gap areas. Finally, to assist
practitioners in applying the multi-level governance AI
in organizations and its impact on the industry level,
we will translate it into effective and responsible AI
practices using a case study.

Index Terms—AI, AI ethics, trustworthy AI, XAI,
AIMLOps, AIOps, software engineering, software ar-
chitecture, pattern, best practice

I. Introduction

Artificial Intelligence (AI) reshaped our lives and helped
people make better predictions and more informed and
wise decisions. However, these high techs are still in their
infancy, and there remains much promise for AI to pro-
mote innovation and address global challenges people face.

Consecutively, ethical concerns and anxieties are fuelling
around AI [1]. Many enquiries exist on the trustworthiness
and adoption of AI systems, including concerns about

exacerbating inequality, the digital divide, climate change
and market concentration. Additionally, there are concerns
that the use of AI may compromise human rights and
values such as privacy. To address these concerns and
ensure the responsible development and use of AI, a
collaborative effort involving multiple stakeholders and
international cooperation issued guidelines and ethical
principles. Despite the creation of ethical guidelines for AI
development inside organizations, it can be challenging for
developers to apply these principles in practical situations.
These principles are often abstract and may not provide
clear direction for specific implementation [2]. Therefore,
more specific and actionable guidelines are needed to assist
developers in implementing ethical considerations in their
AI systems. XAI, or Explainable Artificial Intelligence,
can provide clear explanations for the decision-making
process of AI systems. This understanding can help build
trust and confidence in the system and its developers. In
addition to transparency and accountability, XAI can also
help ensure that AI systems are non-discriminatory. It is
important to bridge the gap between ethical principles and
the algorithms used in AI systems to ensure responsible
development. However, the architecture of an AI ecosys-
tem consists of three layers: AI software supply chain, AI
system, and operation infrastructure. It is challenging to
show the contribution of each.

One proposed work is Responsible AI (RAI) Pattern
Catalogue [3], which takes a pattern-oriented approach to
promoting RAI in practice. Instead of solely focusing on
ethical principles or AI algorithms, this catalogue focuses
on design patterns so that practitioners can apply them
to ensure their AI systems are responsible throughout the
software development process. The catalogue is organized
into three categories: 1) governance patterns to estab-
lish multi-level governance, 2) process patterns to estab-
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lish trustworthy development processes, and 3) product
patterns to integrate responsive design into AI systems.
In addition, it focuses on all aspects of the ecosystem
(industry-level, organization-level and team-level) without
the planning of the design and the development tools to
support the navigation and utilization of the RAI pattern
catalogue.

In this paper, we take a different approach by focusing
on the organization-level patterns at the system level
rather than just the ethical principles or AI algorithms.
This approach aims to integrate responsible design in
organizations into final AI products by looking at the
Machine Learning Operations (MLOps) in a bigger picture
and the design patterns that reshape the system. This is
done by bridging the gap between the organization-level
and team-level and facilitating navigation using MLOps.
We start by looking at the main two levels of an orga-
nization in addition to the team-level and examine the
currently available methods [6]–[10]. Then we make the
links on where those methods meet and create the best
practices using the multi-level governance patterns at the
organization-level. The overarching research question that
has guided this study is:

What is the multi-level governance pattern principle-to-
practice proposed for responsible AI systems to bridge
the gap between team-level and organization-level using
MLOps?

The main contributions of this paper are as follows:
• Find the link between team-level governance patterns

and organization-level patterns.
• Suggest navigation and utilization of team-level gov-

ernance patterns with the organization-level patterns.
• Explore a case study that suits this principle-to-

practice multi-level governance pattern.

II. Related Work
The issue of creating AI that is ethically accountable has

garnered a great deal of interest among both industrial and
academic communities. To promote ethical AI practices, a
multitude of AI ethics principles and guidelines numbering
around 100 have been established by various entities,
including governments, companies, and organizations [12].
However, these guidelines often need to be more general
and theoretical for individuals involved in the implemen-
tation of AI systems to apply in real-world scenarios.

There has been a concerted effort in AI to address the
challenges of RAI. One approach that has gained traction
is the development of algorithm-level solutions. These
solutions are designed to address specific aspects of the nu-
merous high-level AI ethics principles and guidelines that
various entities have established. By focusing on a subset
of the principles, these algorithmic solutions aim to bring
concrete and practical approaches to address some ethical

concerns related to AI. One approach developers used is
limiting user access and preventing reverse engineering or
modifications to the system design. Rather than providing
full access to AI systems by running them locally, it is
recommended to offer AI services through cloud-based
platforms and manage interactions through APIs [11]. As
an illustration, access to OpenAI’s language model GPT-
3 is limited to approved users who can only integrate it
into their AI systems via API. Another example is Google
Vision AI’s facial recognition feature, which is limited to
a select few celebrities and only accessible through API.
Despite these efforts, there have been instances where the
algorithm has been exposed to the outside without proper
internal review and verification, leading to potential issues
with the responsible use of AI.

However, it is important to note that these algorithm-
level solutions are just one part of the larger picture of
RAI. There may need to be more than just implementing
them to address all the ethical concerns related to AI, as
the principles are often complex and multifaceted. It re-
quires a collaborative effort between researchers, develop-
ers, policymakers, and other stakeholders (board members,
executives, and managers) to ensure that AI is developed
and used ethically and responsibly.

III. Methodology
In order to build up the links of the multi-level gover-

nance for RAI systems within organizations, we first eval-
uate the available methods at the team and organizational
level [3] to understand their strengths and limitations.
We then identify the gaps that provided opportunities for
improvement. As shown in Figure 1, the hierarchy of the
organization and team-level stakeholders in the industry
is depicted on the left side of the illustration, providing a
visual representation of the various levels of responsibility
and decision-making within the industry. The right side of
the figure displays the current methods available, which
are being utilized to support the operations and processes
of the stakeholders.

The illustration provides a comprehensive overview of
the stakeholders involved and the methods being utilized,
offering insight into the strengths and limitations of the
current methods. In addition, the use of XAI and RAI
connectors, as shown in the illustration, can further opti-
mize the operation of the current methods and support the
efforts of the stakeholders. Utilizing these connectors can
provide a more comprehensive and user-friendly experi-
ence, leading to improved outcomes and increased success
for the organization and its teams.

Furthermore, we evaluated an examination of MLOps
technologies and tools for each stage of the project pipeline
and the roles involved [14]. In this examination, we iden-
tified the weakness of the method being used as the
absence of XAI and RAI. The lack of XAI and RAI in
the method being used can result in unintended conse-
quences and decreased trust in the system. Therefore,
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Fig. 1. A Deep Dive into the MLOps Workflow with the XRc Phase: Understanding Key Actor Roles and Responsibilities

it is essential to consider incorporating these elements
into any machine learning project to ensure accountability
and transparency. To the best of our knowledge, there is
no standard for implementing the multi-level governance
pattern for RAI with XAI in MLOps.

The XAI and RAI connector (XRc) can play a crucial
role in connecting team-level governance to organization-
level governance implementation in MLOps. By providing
clear and understandable explanations for the decisions
made by machine learning models, XAI helps to increase
transparency and accountability at the team level. This
can be especially important in complex projects involving
multiple stakeholders and team members. RAI, on the
other hand, helps to ensure that ethical and moral con-
siderations are taken into account throughout the entire
MLOps pipeline. This can involve creating policies and
guidelines for RAI and conducting risk assessments and
impact evaluations. By incorporating RAI into MLOps,
organizations can ensure that their use of AI aligns with
their values and meets regulatory requirements.

By introducing XRc into the MLOps, organizations
can bridge the gap between team-level governance and
organization-level governance implementation in MLOps.
This helps to ensure that AI systems are used responsibly
and ethically while providing a clear and transparent
explanation of their decision-making process.

IV. Background on MLOps Workflow Stages
Constructing a machine learning pipeline can be a

challenging endeavour. The pipeline is often constructed
incrementally with the assistance of tools that have limited
integration capabilities. MLOps seeks to streamline this

process by automating the pipeline. It combines machine
learning, data engineering, and DevOps practices, essen-
tially streamlining and accelerating the operationalization
of an ML model (including building, testing, and releasing)
by incorporating DevOps practices into the process. Deter-
mining which stage should be executed by which actor in
the MLOps pipeline is complex and often requires multiple
iterations to arrive at a suitable solution. However, four
major stages have been identified by examining multiple
studies. Subsequently, we will outline each component in
detail for that particular stage.

a) Data Management Phase: It can be challenging
due to domain-specific limitations [53] that affect rela-
tionships between attributes, historical records’ accuracy,
and state transitions [30]. Domain experts are crucial in
ensuring that data models align with project goals and
KPIs. They validate potential data and machine learning
models to meet project requirements. Some organizations
employ Data Stewardship to oversee data quality man-
agement and governance, with defined roles such as chief,
business, technical data stewards, and a data quality board
[52].

b) ML Preparation Phase: This set of functions in the
ML preparation stage deals with classic ML preprocessing
tasks. Data quality is important and ensured by various
roles with the help of data engineers and stewards. Im-
plementing the ML model requires collaboration between
data scientists, domain experts, and those responsible for
defining the problem within the domain [42]. In summary,
here are the functions in the ML preparation phase:

• ML Data Acquisition: The ML pipeline is fed
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with relevant data based on the prior declared data
management plan and selection by the data engineer.

• Data Cleaning and Labeling: The input data is
cleaned and labeled for ML operations with the help
of data scientists and domain experts [30].

• Data Versioning: The separation of test, training,
and validation data sets is crucial for the success of
ML models and is achieved through data versioning.
c) ML Training Phase: The role of data scientists is

crucial in the ML Pipeline Phase. They ensure the flexibil-
ity, scalability, and proper technology selection of the ML
pipeline while also working to improve model performance.
They select the ML pipeline structure, algorithms, and
hyperparameters through model versioning and validation
and are the main users in data processing for big data
projects. AutoML techniques [44] and tools support data
scientists and domain experts in efficiently selecting the
ML pipeline and training the model. The process includes
feature preprocessing automation, model selection, and
hyperparameter optimization. To sum up, the following
functions are performed in the ML preparation phase:

• Pipeline Structure Search: The structure of an
ML pipeline depends on the type of data (struc-
tured or unstructured) and the technique used to
solve the problem (supervised, unsupervised, or semi-
supervised learning). The specific performance met-
rics to be used must also be defined based on the
specific domain-specific requirements of the problem
being solved.

• Algorithm and Hyperparameter Selection: The
choice of the most suitable ML algorithm for a prob-
lem is made by data scientists. The algorithm’s perfor-
mance can be improved by adjusting its hyperparam-
eters, such as the number of layers in a neural network
[36]. However, this process can be time-consuming
and complex which addressed by AutoML in [44].

• Model Versioning: It is a way to keep track of the
interdependencies between an ML model, its data,
framework, and modelling procedure. It is important
to revert to previous models if there is a problem in
production and then deploy the correct version at the
right time. Model versioning increases accountability
and is essential for managing complex ML models.
d) Deployment Phase: The deployment stage is a

pivotal moment in the MLOps process. During this phase,
software engineers are responsible for incorporating the
approved models into the corresponding applications and
ensuring the smooth operation of the entire system. To
maintain this stability, MLOps engineers must contin-
uously monitor the model, the application as a whole,
and the data being used [42]. Another key player in
this phase is the DevOps engineer, who is responsible
for constructing, testing, and deploying the functioning
system. In general, it is characterized by the following
tasks:

• Integration of validated models into the relevant ap-
plications by software engineers.

• Maintenance of the operational stability of the en-
tire system by MLOps engineers through continuous
monitoring of the model, application, and data.

• Construction, testing, and deployment of the func-
tioning system by DevOps engineers.

V. XAI and RAI Connector(XRc)

The integration of XRc into the MLOps pipeline may
come with added overhead. However, it proves to be a
valuable addition to the process as a whole. The addition
of XRc not only reduces the risk of failure in RAI but
also promotes efficiency by allowing for early detection
of any problems with implementing organizational-level
governance. This helps to avoid duplicating efforts and
ensures that the RAI is being developed effectively. As
shown in Figure 2, XRc has been inserted between the ML
pipeline and ML deployment phases to analyze the changes
before migrating into the application and incorporating
the organization-level governance into the process. Let us
now delve into the sub-phases of XRc.

A. Model Type Identification
Both dynamic and static identification methods can be

used to identify the type of machine learning model, with
dynamic methods involving examination of the model’s
API or performance and static methods involving exami-
nation of the code and architecture used to implement the
model.

a) Static Identification Method: In code, the type
of machine learning model can be identified by exam-
ining the architecture, algorithms, and libraries used to
implement the model. Understanding the architecture of
the model, such as the number of hidden layers or the
presence of decision trees, can give a good indication of the
type of machine learning model used. Additionally, many
machine learning libraries provide pre-built models with
clear documentation that specify the type of model being
used. The documentation for these libraries usually clearly
states the type of model being used. For example, in the
scikit-learn library [37], the use of the ‘LogisticRegression’
class for logistic regression, which is a supervised learning
algorithm, or the ‘KMeans’ class for k-means clustering,
which is an unsupervised learning algorithm.

b) Dynamic Identification Method: There are two
main ways to detect the type of machine learning model
dynamically:

• Examination of Model API and Function: This
involves looking at the functions that the model ex-
poses, such as the ‘predict‘ function, and determining
the type of model based on the inputs and outputs of
the function.

• Examination of Model Performance: This in-
volves evaluating the model’s performance on a known
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Fig. 2. The XAI and RAI connector (XRc) to bridge explainable and responsible operations with machine learning life cycle

dataset and determining the type of model based on
the performance metrics and results obtained.

The choice of dynamic method depends on the specific
requirements of the use case. For example, examining the
API or functions can be easiest if they are accessible,
whereas evaluating the model’s performance on a known
dataset may be the only option if there is no API or
function access.

B. XAI techniques Implementation
XAI techniques are implemented by AI/MLOps en-

gineers considering the ML algorithm and the different
audiences. It may require a trade-off between technical
detail and simplicity, transparency and fairness, and other
factors.

a) Audience Evaluation: While the audiences is
mainly at the organization level, AI/MLOps Engineers can
categories their audience into two:

• End users require simple and understandable expla-
nations of the decisions made by a machine learning
model. XAI techniques for this audience include rule-
based systems, decision trees, or prototype-based ex-
planations.

• Regulators require explanations of the decisions made
by a machine learning model to ensure compli-
ance with regulations and ethical standards. Model-
agnostic techniques like Local Interpretable Model-
Agnostic Explanation (LIME) [54] or SHapley Ad-
ditive exPlanation (SHAP) [55] can provide expla-

nations for the predictions made by any machine
learning model.
b) ML Algorithm Evaluation: It is not necessary for

an AI/MLOps engineer to have a deep understanding of
the specific ML algorithm in order to choose an XAI
method. However, having a general understanding of the
ML algorithm and its strengths and weaknesses can help
choose an appropriate XAI method. In addition, since
some XAI methods can be used and integrated together,
AI/MLOps engineers have to consider the broad range of
XAI techniques. Those methods can be categorized into
the following categories [13]: Model-Agnostic Techniques:
Model-agnostic XAI techniques can be applied to any
machine learning model, regardless of the underlying al-
gorithm or architecture. Examples of model-agnostic XAI
techniques include LIME and SHAP.

• Model-Specific Techniques: Model-specific XAI
techniques [13] are designed specifically for a partic-
ular type of machine learning model, such as decision
trees or neural networks. Examples of model-specific
XAI techniques include saliency maps for neural net-
works and decision trees for decision trees.

• Post-Hoc Techniques: Post-hoc XAI techniques
[13] are techniques that are applied to a trained
machine learning model after it has been trained
to explain its decisions and actions. Examples of
post-hoc XAI techniques include LIME, SHAP, and
saliency maps [47].

• Integrative Techniques: Integrative XAI tech-
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niques involve integrating XAI into the training pro-
cess of a machine learning model so that explanations
can be generated as part of the model’s regular oper-
ation.

These categories are not mutually exclusive, and some
XAI techniques may fall into multiple categories. The
choice of XAI technique will depend on the specific re-
quirements of the use case and the type of model being
used.

C. Gathering and Filtering
Gathering and filtering XAI methods involves selecting

a subset of XAI methods that are appropriate for a
specific use case and then integrating and combining those
methods to provide a more comprehensive and effective
explanation of the decisions made by a machine learning
model. To effectively utilize XAI methods for a specific use
case, here are the steps to gather and filter XAI methods:

• Define the requirements: AI/MLOps engineers
should start by defining the requirements based on
the audience they are trying to target and the type of
model being used. This will help to determine which
XAI methods are most appropriate for the use case.

• Gather XAI methods: Next, gather a set of XAI
methods that are appropriate and generated by the
XAI technique Implementation. This may require
back and forth to add and remove certain XAI tech-
niques.

• Filter XAI methods: Once a set of XAI methods
is gathered, filter the methods based on the specific
requirements of the use case. Consider factors such
as the complexity of the method, the amount of
computational resources required, and the amount of
technical detail that is appropriate for the audience.

• Combine XAI methods: After filtering the XAI
methods, MLOps Engineers might consider combin-
ing methods to provide a more comprehensive and
effective explanation of the decisions made by the ma-
chine learning model. They can use techniques such
as multi-modal explanations, ensemble explanations,
or hybrid explanations to combine XAI methods.

D. Representation and API
XAI representation refers to the format in which the

explanations generated by XAI techniques are presented
to the user. The representation can be in the form of text,
visualizations, or other forms of data, and it depends on
the specific requirements of the use case and the target
audience.

An XAI API, or Application Programming Interface, is
a set of protocols and tools for building software appli-
cations that provide access to XAI capabilities. An XAI
API allows developers to easily integrate XAI techniques
into their applications and provide explanations for the
decisions made by machine learning models. For example,
an XAI API might provide functions that allow developers

to generate explanations for specific predictions made by
a machine learning model or to visualize the model’s
decision-making process. The XAI API might also provide
a set of data structures and protocols for representing the
explanations generated by XAI techniques, such as text,
visualizations, or other forms of data. Here are some ways
to make the XAI API interactive:

• Visualizations: Use interactive visualizations, such
as heat maps, bar charts, and scatter plots, to help
stakeholders understand the explanations generated
by the XAI API. This can include interactive visual-
izations of the model’s behavior, such as feature im-
portance, or visualizations of individual predictions,
such as decision trees.

• User Input: Allow stakeholders to provide input to
the XAI API, such as selecting specific predictions to
explain or adjusting the parameters of the explana-
tions. This can help stakeholders better understand
the explanations generated by the API and tailor the
explanations to their specific needs.

• Dynamic Explanations: Provide dynamic explana-
tions that change based on user input or other factors,
such as the type of model being used or the specific
prediction being explained. This can help stakeholders
better understand the API’s explanations and see
how changes in the model or input data affect the
explanations.

• Feedback Mechanisms: Provide feedback mecha-
nisms that allow stakeholders to provide feedback on
the explanations generated by the XAI API. This
can include simple feedback forms, or more complex
mechanisms, such as a feedback rating system. This
can help organizations improve the quality of the
explanations generated by the API and better meet
the stakeholders’ needs.

In a nutshell, XAI representation refers to the format
in which XAI explanations are presented to the user. At
the same time, an XAI API provides a set of protocols
and tools which integrate XAI techniques into software
applications and explain the decisions made by machine
learning models. The choice of XAI representation and
API will depend on the specific requirements of the use
case and the target audience.

E. Decision Process

Incorporating an XAI API into the decision-making
process at the organizational level can help stakeholders
make informed decisions about whether to proceed with
or stop an ML algorithm based on the transparency and
fairness of the model. To make the XAI API interactive,
SW Engineers and MLOps can add features that allow
stakeholders to interact with the explanations generated
by the API.
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Fig. 3. An XAI and RAI Connector (XRc) implementation case study for cloud-based image classification AI model

VI. Example Conceptual Scenario
We elaborate on an XAI service for cloud AI and develop

its XRc implementation as an example conceptual scenario
to present the effectiveness of the XRc in improving the
transparency and fairness of the machine learning model
to the non-technical stakeholders (board members, execu-
tives, and managers). As Figure 3 is shown, the entry point
and the exit point are ML Pipeline Phase and Deployment
Phase in Figure 2, which makes it our XRc. Such XRc
implementation takes over the pre-trained image classifi-
cation model on Cloud AI Service and uses XAI techniques
to explain and analyze the pre-trained model. It then
further exposes its representation and API to enable the
stakeholders to decide on the deployment phase. At first,
the model is identified as an image classification. Then for
the XAI techniques implementation, we select the Grad-
CAM XAI method paired with an approximation model
to obtain the explanations that approximate the cloud AI
model. We further analyze the explanation result to gather
and filter the information concerning the stakeholders.
Finally, we develop the APIs to represent such information
and XAI operations, allowing stakeholders to interact
efficiently with those processes.

VII. Conclusion
The connection between team-level governance patterns

and organization-level patterns can be effectively estab-
lished using MLOps. The XRc phase provides a clear
connection between the two levels of governance, allowing
for the navigation and utilization of both patterns. The
Design Explanation Microservices and Provenance case
study serve as a practical example of this principle-to-
practice multi-level governance pattern, showcasing how
XAI techniques can be effectively implemented in real-
world scenarios to support both team and organizational
governance goals. By utilizing the XRc phase in MLOps
and examining the case study results, organizations can
better understand how to bridge the gap between team-
level and organizational-level governance in a way that is
both effective and efficient.

Future work in this area could involve exploring new
and innovative XAI techniques and methods to enhance

further the efficiency and effectiveness of the XRc phase in
MLOps. Additionally, continued research into the relation-
ship between team-level and organization-level governance
patterns in the context of MLOps will be important in or-
der to fully understand the best practices and strategies for
bridging the gap between these two levels of governance.
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