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In this article, we follow a process of explainable artificial 

intelligence (XAI) method development and define 

two metrics in terms of consistency and efficiency 

in guiding the evaluation of XAI explanations. 

Explainable artificial intelligence (XAI) practices 
perform an interpretive analysis of the input 
data. They produce an approximation summary 
as an explanation relating inputs and outputs, 

without engaging the internal representations, attributes, 
and structures of the learning models.1 XAI is emerg-
ing as a common goal for data scientists, engineers, 
and AI practitioners to deal with the problem of AI 
opacity on the purpose and server and how the models 
work. Critically, Babic et al.2 have highlighted the need 
for an explainable method to be trusted in the health-
care domain. In particular, a trustworthy XAI method 
should exhibit some robustness, which means the XAI 

method should produce similar explanations for simi-
lar inputs.2

The discrepancy in the explanation summary leads to 
ambiguity in understanding the machine learning pre-
diction. This becomes the question of whether the expla-
nations from different XAI methods are trustworthy. 
Therefore, the consistency of these summaries becomes 
essential for the trustworthy and accountable assess-
ment of machine learning models.

One source of variation of explanation summaries orig-
inates from the XAI operations. The major entities involved 
in XAI operations are datasets, a trained model, and XAI 
methods. An XAI method can be applied to the model 
prediction on each data sample. As a result, a set of expla-
nation summaries are collected for the same prediction 
model. One XAI method may demonstrate different levels 
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of similarity among the explanations of 
each data sample. In addition, multiple 
XAI methods may yield explanations in 
variation from one another on the same 
dataset and model. We describe one 
example scenario of XAI explanation 
variation in the case of code vulnerabil-
ity analysis in the “Observing Explana-
tion Consistency” section.

A conventional approach is to com-
pare several XAI methods’ explana-
tion summaries and make decisions 
among the available results, based on 
how consistent the explanation sum-
maries are. If the decision cannot be 
reached with majority voting, devel-
oping a new XAI algorithm becomes 
necessary. A proposed XAI algorithm 
needs to define new metrics that measure 
feature contributions from a perspec-
tive not fully addressed by state-of-the-
art XAI methods.

In addition to explanation sum-
mary consistency, state-of-the-art XAI 
methods vary in an extensive range of 
runtime delays inherently due to their 
intrinsic algorithms of computing 
features’ contributions. One target of 
a new XAI algorithm is to reduce the 
time complexity, with a consistency 
level comparable to state-of-the-art 
XAI methods. Coherently, the prob-
lem of evaluating existing XAI meth-
ods and developing an XAI alternative 
converges to the question, What are 
the criteria and core activities in eval-
uating XAI methods toward consis-
tent and robust explanation?

In this article, we demonstrate XAI 
engineering in evaluating  different 
XAI methods with well-defined met-
rics, namely, consistency and run-
time efficiency. We further define the 
measure of consistency by using the 
distances among explanation summa-
ries. The runtime efficiency is based 
on asymptotic analysis in terms of 

the number of features and size of the 
data samples. We present two evalu-
ation techniques: 1) comparing with 
a baseline model and 2)  performing 
cross validation among multiple mod-
els. Based on the consistency evalua-
tion of state-of-the-art XAI methods, we 
develop a new model-agnostic method 
for the XAI taxonomy, called the mean 
centroid prediction difference (PredDiff). 
Together with the other nine XAI meth-
ods, we evaluate the consistency and time 
efficiency of the mean centroid PredDiff 
on three domain examples, including 
image classification, code vulnerability 
detection, and search-based ranking. 
We demonstrate a working path of 
systematically evaluating and making 
decisions about an XAI method from the 
trustworthiness point of view.

RELATED WORK
XAI has been an emerging research 
topic in recent years, aiming to explain 
AI models’ logic and decision-making 
processes for users in the interest of 
safety and fairness. Conventionally, 
post hoc XAI methods are categorized 
as model agnostic and model specific.1 
Model-specific methods probe and 
extract model gradients and neuron 
activation states from neural network 
models. Examples include the family 
of XAI methods based on class acti-
vation mapping (CAM),3 including 
EigenCAM,4 GradCAMElementWise,5 
Grad-CAM++,6 XGrad-CAM,7 and Hi -
ResCAM.8 They have been applied 
t o  explain feature contributions to 
image classification algorithms and 
tasks. Existing XAI work has applica-
tions in various domains. Related to 
the case studies in this article, the work 
of Singh et  al.9 introduces model-ag-
nostic Local Interpretable Model-Ag-
nostic E x p l a n a t i o n s  (L I M E)  a n d 
 SHapley Additive exPlanations (SHAP) 

to compare ranking models. The study 
defines completeness and validity 
measurements of ranking models.

Model-agnostic methods are black 
box based and nonintrusive to specific 
machine learning algorithms.9 The 
PredDiff10 and causal explanations11 
analyze the PredDiff by masking an 
individual data feature or a group of 
input data features. LIME12 leverages 
a weighted regularized linear model 
to interpret the input representation. 
SHAP13 utilizes the Shapley value14 to 
calculate feature contribution values.

The robustness of XAI methods in 
terms of the consistency of their out-
puts is essential for adopting algorith-
mic explanations to enhance the trust 
and accountability of AI.15 The trust can 
be based on an individual prediction by 
users. The XAI explanation summary 
related to this level of trust indicates the 
robustness of the explanation for each 
data sample prediction. Based on the 
prediction trust, a user may accept the 
trust at the overall model level. Accord-
ingly, the consistency across multiple 
XAI methods on the same model relates 
to the accountability of AI models. At 
both levels, existing work16 highlights 
quantified metrics that have been 
defined to measure XAI explanation 
results toward the progress of develop-
ing trustworthy AI.

OBSERVING EXPLANATION 
CONSISTENCY
We introduce an observation of expla-
nation consistency across multiple XAI 
methods. In software code vulnerabil-
ity detection, understanding how code 
features affect the accuracy of vulnera-
ble code classification helps reduce v u l-
nerability risks17 and enables auto-
mated corrections on vulnerable code.18 
We have trained an XLNet model19 
as a classifier to classify vulnerable 
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software code at the method level to 
different common weakness enumera-
tion (CWE) types. The feature masking 
is configured in three types, namely, 
1) code only, involving program code 
without comments and import state-
ments; 2) comment only; and 3) import 
only, involving only import statements. 
An XAI method explains the feature 
importance of code, comment, and import 
statement in terms of their contributions 
to code vulnerability classification. We 
eliminate the CWE label tokens in the 
code comments to avoid training the 
machine learning model so that it will 
not “remember” the CWE labels.

Three model-agnostic XAI meth-
ods are applied to the preceding fea-
ture masking scenarios, namely, the 
PredDiff,10 Shapley value,14 and Ker-
nelSHAP.13 Our results show that both 
the Shapley value and KernelSHAP rank 

the feature importance in descending 
order as comment, code, and import state-
ment on public datasets of Juliet (https://
samate.nist.gov/SARD/test-suites/111) 
and the Open Web Application Security 
Project (OWASP) (https://owasp.org/
w w w-projec t-benc h m a rk/ ).  How-
ever, the PredDiff ranks in the order of 
code, import, and comment on the OWASP 
dataset. We observe the difference in the 
explanation summary among the XAI 
methods and datasets. Furthermore, 
we measure the time consumption of 
running three XAI methods against 
the same XLNet model on two datasets. 
The Shapley value and KernelSHAP con-
sume approximately three times and 
20 times as much time as the PredDiff, 
respectively. The complete results are 
available at GitHub (https://github.com/
DataCentricClassificationofSmartCity/
Mean-Centroid-PredDiff). 

In this case, one can select one of 
the three XAI methods as the base-
line model to draw further conclu-
sions about the XAI explanation 
consistency. One option is selecting 
the Shapley value as the baseline. 
Shapley values are initially created to 
assign attributions to specific partici-
pants in coalition games. Shapley val-
ues have been adopted for explaining 
machine learning models since they 
have the properties of efficiency, sym-
metry, dummy variables, and linear-
ity.13 Alternatively, a new XAI method 
can be developed to cross validate the 
existing explanation summary.

EVALUATE XAI 
EXPLANATIONS
The preceding discussion motivates 
a unified process of evaluating the 
existing XAI methods and guiding the 

EXPLANATION OF FEATURES

Explainable artificial intelligence (XAI) methods 
that derive explanations via features include 

masking-based methods and mutation-based 
methods. Feature masking-based methods 
remove certain features or set the features with 
default values.20 Then, the output prediction is 
evaluated. On the other hand, mutation-based 
methods assign possible input values to the 
model and then obtain prediction.S1 The feature 
influence is measured by inputting the black 
box models with feature masking and mutation. 
These methods then measure prediction changes 
compared to the original model and inputs. These 
methods vary from each other in terms of  
1) feature masking and mutation techniques and 

2) summary techniques to compute the feature 
importance.20 Other XAI methods, such as ex-
plain by visualization, apply digital patterns, plots, 
and heatmaps to explain the feature classification 
and localization.S2
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development of a new XAI method. Both activities share 
core activities, as presented in Figure 1.

The process starts with the task of setting XAI goals and 
criteria. Survey works1,20 provide taxonomies and classifica-
tions to select candidate XAI methods that target the same 
goals. The follow-up steps carry out the measurements on 
defined metrics directly related to decision-making fac-
tors in XAI. In this article, we focus on the algorithmic 
complexity and consistency of the explanation summary in 
feature masking and feature removal.

Define consistency for feature-
based XAI explanation
Consider f (̂x[i]), the model prediction on instance x[i]

〈x1
[i],  x2

[i],  …  xp
[i]〉, where p is the number of features. Sup-

pose S is the subset of all the features by masking or 
removing a feature j; that is, S ⊆ {1, 2, 3, …, p} \ {j} and P 
contains the whole features: P = S ∪ {j} Under feature 
masking, the prediction on the masked feature set S and 
whole feature set P for each instance x has the difference 
δj

x[i]
 = f Ŝ(x[i]) − f P̂(x[i]). Hence, the feature contribution 

to the payout by masking feature j on the prediction of 
instance x[i] is defined as a function, φj(δ j

x[i]
). An XAI method 

develops the aggregation of φj(δ j
X) on all the data samples 

differently. Finally, by masking the features one by one, 
the feature importance order is derived by ranking the 
feature contribution values.

After the transformation from feature contribution 
values to the feature importance order, the Kendall tau 
ranking distance21 is applied to measure the distance of 
any two pairs of the XAI method’s explanation results.

Analyze time complexity
Asymptotic analysis for φj(δ j

x) depends on the size of the 
data instances number N and number of features P. The 
Shapley value computes the feature value difference 
under feature masking δ j

x for the whole dataset for each 
masked feature. The Shapley value considers the per-
mutation when selecting one feature to mask and makes 
the reverse value of the permutation the weight to sum 
the feature contribution value φj. Overall, we derive that 
the Shapley value has the complexity Θ(N  ×  P  ×  2P). Ker-
nelSHAP13 uses the linear LIME explanation model and 
classical Shapley value. According to the definition, Ker-
nelSHAP depends on the LIME loss function,12 weighting 
kernel, and regularization term. Therefore, KernelSHAP 
has the complexity Θ(N  ×  (2P +  P3)). The PredDiff removes 
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each feature individually and measures 
the difference between each instance’s 
prediction and the feature removal 
prediction. The time complexity of the 
PredDiff is Θ(N  ×  P). In the “Develop a 
New XAI Method” section, we present 
a newly proposed XAI method with the 
time complexity of Θ(N  ×  P2).

Collect explanation summary
The evaluation of the XAI explanation 
summary begins with the configura-
tion of the test dataset into several ver-
sions, including the whole features and 
each subset of masked features. The 
machine learning model runs on the 
configured test dataset to output δ j

x[i]
 the 

prediction. Next, each XAI method com-
putes the feature contribution φj(δ j

x) by 
aggregating all the data samples.

Measure explanation  
consistency
The evaluation process in Figure 1 pro-
vides a guideline concentrating on the 

consistency of the explanation sum-
mary as a primary attribute to decide 
the selection of the XAI method and 
development of a new XAI method. 
T he comput i ng comple x it y of a n 
XAI method is another additional 
attribute of decision making. At the 
condition checking point, XAI prac-
titioners decide to use the existing 
XAI method or build a new one. In 
both cases, the consistency defini-
tion enables a unified understand-
ing of XAI methods in three phases, 
including 1) computing the differ-
ence of prediction under the feature 
configuration, 2) computing the fea-
ture contribution value based on the 
PredDiff, and 3) converting the con-
tribution values to the explanation. 
A distance metric, such as the Ken-
dall tau ranking distance, is applied 
to measure the distance between two 
explanation summaries. The larger 
the distance value, the less consistent 
the two explanations are.

DEVELOP A NEW 
XAI METHOD
We aim to explain the effects of fea-
ture masking by the relative difference 
in the ratio to the prediction without 
feature masking. The state-of-the-art 
methods consider the absolute Pred-
Diff. The objective of this new XAI 
method is to achieve consistency of 
explanation summaries comparable to 
the state-of-the-art methods and reduce 
computing time consumption. Figure 2 
describes the core tasks of computing 
the PredDiff under feature masking and 
the feature contribution value for each 
masked feature in three phases.

Phase 1: Compute the PredDiff 
under feature masking
Algorithm 1 shows that the PredDiff δ j

x[i]
 

(as the x coordinate) and its correspond-
ing prediction fP̂(x[i]) (as the y coordinate) 
form a data point in the 2D Euclidian 
plane. Hence, N numbers of 2D points 
are created for each masking feature j.

Phase 1: Prediction Difference
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FIGURE 2. The dataflow of the mean centroid PredDiff.
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Phase 2: Compute feature 
contribution values
We observe from the phase 1 output that 
the data points form clusters. We further 
group the data points into kj numbers of 
clusters by the agglomerative clustering 
algorithm.22 We then estimate the cen-
troid data point of these clusters, using 
a Gaussian mixture model.23 For each 
masked feature  j, we define its feature 
contribution value φj aggregated for all 
the input data samples as the slope, or tan-
gent, of the centroid data point to the ori-
gin point in a 2D plane. An example in Fig-
ure  3 depicts how the Gaussian mixture 
clusters aggregate the contribution values 
of two feature markings. Data points are 
grouped into two clusters for each feature. 
The centroid data point is derived as the 
weighted average by the clusters’ density 
points generated by the Gaussian mixture 
model. This algorithm has considered 
the distribution density of the prediction 
changes of all the data samples.

Phase 3: Convert to feature 
importance order
The conversion is simply ranking the 
features in descending order accord-
ing to their feature contribution value. 
The consistency of the two explana-
tions is then measured as the distance 
between two orders.

Asymptotic analysis of 
time complexity
Given the number of features P and 
number of instances N, computing the 
PredDiff is based on the time complexity 
Θ(N  ×  P) in phase 1. In phase 2, comput-
ing the clusters takes Θ(N  ×  P2). Over-
all, the time complexity is Θ(N  ×  P2).

CASE STUDY ON IMAGE 
CLASSIFICATION
The first case study evaluates the expla-
nation summaries of image classification 

in face mask detection. The mean cen-
t r o i d  P r e d D i f f  m e t h o d  i s  c r o s s 
validated with six state-of-the-art 
model-specific XAI methods. The 
open source pretrained ResNet5024 
is applied to detect the face mask  
categories f rom i mages. T he d at a set  

( h t t p s : // g it hub.com/ youy i n n n/
ai_face_mask_detection_project.git) 
contains 2,630 images with five dif-
ferent labels: wearing an N95 mask, 
wearing a cloth mask, wearing a sur-
gical mask, mask worn incorrectly, 
and no mask.

ALGORITHM 1: MEAN CENTROID PREDICTION DIFFERENCE EXPLANATION.
⊳ f âgg, the agglomerative clustering algorithm22

⊳ fĝmm, the Gaussian mixture model23

⊳ kj, the number of clusters under feature masking j
⊳ Centroid as the cluster centroid point
⊳ S ⊆ {1, 2, 3, …, p} \ {j}, the subset of all the features by masking or remov-
ing a feature j
⊳ P, the whole features, P = S ∪ {j}

Input: Input dataset X, full feature set P, masking feature set S, and model 
prediction f (̂x[i])

/* Phase 1: Compute the difference of prediction under feature 
configuration*/
for all j ∈ P do

for all xi ∈ X do

δj
x[i]

 ← f Ŝ(x[i]) − f P̂ (x[i])

νj
x[i]

 ← <δj
x[i]

,− f P̂(x[i])

end for
end for
Vj ← {νj

[1], νj
[2], …, νj

[N]}

/* Phase 2: Compute the feature contribution value*/
/* Group Vj to kj clusters */
kj ← f âgg(Vj)
/* Derive the centroid of kj clusters */
centroidj ← fĝmm(kj, Vj)
/* Compute the contribution value as the tangent of the centroid data 

point in 2D coordinates */
φj(δj

X ) = tanh(centroidj)

/*Phase 3: Convert the contribution values to the feature importance 
orders */

order = sort(abs(φj(δj
X)))

Output: φj(δj
X), order

Authorized licensed use limited to: Concordia University Library. Downloaded on May 21,2024 at 21:19:35 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/youyinnn/ai_face_mask_detection_project.git
https://github.com/youyinnn/ai_face_mask_detection_project.git


SOFTWARE ENGINEERING FOR RESPONSIBLE AI

56 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

Applying mean centroid 
PredDiff to image explanation
As illustrated in Figure 4, we gen-
erate a kernel masking matrix to 
mask the pixels iteratively by fill-
ing in zeros. We then obtain (l  ×  l)/ 
(n  ×  n) masked images for the model 
prediction, where the image size is 
(l   ×   l)  a n d  t h e  k e r n e l  m a s k i n g 
matri x has size (n  ×  n). The mean 
centroid PredDiff summarizes the 
pixel feature contributions from the 
PredDiff between the original image 
and the masked ones. In the exper-
iment, l is 256, and we take kernel 
masking matrix size n = 8.

Explanation evaluation analysis
Six XAI methods are selected for 
explaining the saliency map of the 
input images, including Grad-CAM25, 
EigenCAM,4  GradCAMElementWise,5 
Gr a d- C A M+ +, 6 XGr a d- C A M ,7 a nd  
HiResCAM.8 The saliency map expla-
nation shows the active area of the 
image that contributes to the model’s 
prediction.

Consistency observation. CAM-
based methods compare the prediction 
change between the original image 
and masked image by the saliency 
map. The mean centroid PredDiff sum-
marizes the prediction change from 
kernel-based image masking.

Figure 5 displays the prediction 
change distance distribution of 2,630 
images. EigenCAM has the longest 
distributed range compared to other 
methods. This indicates that Eigen-
CAM varies the most in explaining 
the feature contributions of the 2,630 
images. In contrast, the mean centroid 
PredDiff plot has the lowest range. 
This shows that the mean centroid 
PredDiff method is more consistent 
across all the images.

Time complexity analysis. The 
mean centroid PredDiff has the time 
complexity of Θ(N  ×  P2), given the 
number of images N and number of 
features P. In this case, an image with 
a masking kernel matrix is counted as 
one feature. Hence, P = (l  ×  l)/(n  ×  n) is 
the number of features.

CASE STUDY ON CODE 
VULNERABILITY DETECTION
Referring back to the discussion in the 
“Observing Explanation Consistency” 
section, we observe that the explanation 
produces different feature importance 
orders from three state-of-the-art meth-
ods. We reevaluate the XAI methods 
by adding the mean centroid PredDiff 
method. Table 1 shows that the PredDiff 
and mean centroid PredDiff have the 
same feature importance order. In both 
values, code is the most important fea-
ture. The importance order of comment 
and import statement varies from the 
Juliet and OWASP datasets. The Shap-
ley value and KernelSHAP share con-
sistent results but value comment more 
than code and import statement. Security 
experts can make further decisions on 
XAI methods based on the preceding 
explanation.

CASE STUDY ON  
SCHOLAR SEARCHING 
RANKING SYSTEM
This case study attempts to explain the 
feature influence of an open source 
semantic scholar search (S2Search) 
ranking model.26 S2Search provides 
a prediction tool to output a rank-
ing score for each scholarly article, 
given a query keyword and list of 
features. The arXiv dataset, selected 
from Kaggle (https://www.kaggle.
com/d at a set s/Cornell-Universit y/ 
arxiv), has 40 categories and a total of 
542,877 articles. An article contains 
six relevant features: title, authors, 
abstracts, citation numbers, venue, 
and publication year. Each category is 
performed as a single dataset.

Cross validation of consistency

Across-datasets comparison. The 
median cont r ibut ion v a lues sor t  
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the  feature importance order of an 
XAI method from 40 datasets. We 
measure the Kendall Tau Ranking 
Distance (KTRD) distance between 
this aggregated feature importance 
order and the orders of 40 datasets 
as the across-datasets comparison. 
Figure  6(a) shows the median value 
of KTRD distances across datasets. 

It demonstrates that the mean cen-
troid PredDiff, Shapley value, and Ker-
nelSHAP are more consistent than 
the PredDiff.

Across-XAI-methods comparison. The 
baseline method is selected in rotation 
out of the four methods. Figure  6(b) 
plots the 50th percentile of KTRD 

TABLE 1. The feature importance order summary of 
the code vulnerability detection case study.

XAI method Juliet test case OWASP test case

PredDiff Comment > code > import Code > import > comment

Mean centroid PredDiff Comment > code > import Code > import > comment

Shapley value Comment > code > import Comment > code > import

KernelSHAP Comment > code > import Comment > code > import
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CAM-based methods. The green line indicates the mean value. 

Authorized licensed use limited to: Concordia University Library. Downloaded on May 21,2024 at 21:19:35 UTC from IEEE Xplore.  Restrictions apply. 



SOFTWARE ENGINEERING FOR RESPONSIBLE AI

58 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

distances. In summary, the mean cen-
troid PredDiff is more consistent than 
the PredDiff but less than the other 
two methods.

Computing time consumption
Figure 7 indicates that the time con-
sumption curve increases as the 
number of data samples grows. The 

PredDiff and mean centroid Pred-
Diff are more time efficient than 
KernelSHAP and the Shapley value. 
The mean centroid PredDiff spends 
approximately 10% more time than 
the PredDiff due to the clustering 
computation.

This article discussed the trust-
worthy view of XAI methods 
by defining consistency and 

efficiency metrics. Two metrics, con-
sistency and time efficiency, provide 
a tradeoff view to evaluate XAI meth-
ods. In the case that higher consistency 
and faster time efficiency cannot be 
achieved simultaneously, users are 
left to prioritize the metrics for deci-
sion making. Through case studies, we 
observe that state-of-the-art XAI meth-
ods may produce explanation summa-
ries that vary at the dataset level and 
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FIGURE 6. A consistency comparison across datasets and XAI methods. A shorter link edge indicates a more consistent XAI method. 
The results (a) across datasets and (b) across XAI methods.
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across methods. Hence, this motivates 
work to develop a unified evaluation 
method that helps to assess the expla-
nation consistency of existing XAI 
methods as well as guide the devel-
opment of a new XAI method. This 
evaluation method is the base for con-
structing the service pipeline of XAI 
operations. 
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